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Abstract

We are given a directed network = (V, A, u) with vertex setV, arc setA, a source
vertexs € V, a destination vertex< V, afinite capacity vectar = {u;;};jca, and a positive
integerm € Z,. The multiroute maximum flow problemr{-MFP) generalizes the ordinary
maximum flow problem by seeking a maximum flow frarto ¢ subject to not only the regular
flow conservation constraints at the vertices (exeemtdt) and the flow capacity constraints
at the arcs, but also the extra constraints that any flow must be routeghalarc-disjoints-t
paths. In this paper, we devise two new combinatorial algorithmsfdiFP. One is based
on Newton’s method and another is based on augmenting-path techniqusd/ow how
the Newton-based algorithm unifies two existing algorithms, and how the atiggath
algorithm is strongly polynomial for case = 2.

Keywords Newton’s method, augmenting-path, multiroute flow, paraiméow

1 Introduction

The Problem: In the ordinary (single commodity) maximum flow problem, @igective is to send
the maximum amount of a single commaodity from a single soto@esingle destination through a
network without violating the flow conservation constraiat the vertices (except the source and
the destination) and the capacity constraints at the arose 8s initiation by Ford and Fulkerson
[12], the maximum flow problem has been receiving extense@&tinents in the literature because
of its vast applications. The reader is referred to the booRlbuja et al. [2] (Chapters 6-8) for
further information on this problem.

There has been recent interest in extending the ordinarynmuax flow problem to themulti-
routeversion in order to provide fault-tolerance against arlufas in the network ([1, 4, 5, 7, 15,
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17], etal.). Consider, for example, a communication netwdrkse arcs are liable to physical fail-
ures. In the ordinary maximum flow problem, any generic uhiloov is routed along a single path
from the source to the destination, and this unit is lost velrenan arc on the path fails. Therefore
this routing method is vulnerable even to a single arc failuh more robust strategy is to have
equal flow in multiple disjoint routes (multiroute), i.en, copies of the same generic unit flow in
m disjoint paths (routes) from the source to the destinatidrerem € 7. This guarantees that
even in the case oh — 1 arc failures, at least one route will survive, and hence apy of the
generic unit can be routed to the destination. Further egiptins can be found in [1].

We now formally define the problem. We introduce some notatiirst. For any finite set,
let |S| denote the cardinality of, and IetR'f‘ denote the set of nonnegative real column vectors

with dimension|S]|.

Definition 1.1 (Multiroute Maximum Flow Problem(m-MFP)): Given a directed network’ =
(V, A, u) with vertex set/, arc setA, a source vertex € V, a destination vertex € V' : t # s,
and an arc capacity vectar = {u;; }; jjea € R‘f', letm € Z, be any positive integer.

(1) An m-route from s to ¢ consists ofm arc-disjoint s-t paths. Arc(i,j) € A is said to be
contained in anm-route if it is contained in some-t path therein.

(2) Anm-route path-flowfrom s to ¢ is an assignment of nonnegative weightstaoutes.
(3) Thevalueof the anm-route path-flow is the sum of the weights assigned.

The problem is to find am-route path-flow of maximum value.

DenoteP to be the set of alln-routes froms to ¢, and denote furtheP;; to be the set ofn-
routes that contain a given af¢ j) € A. Define vector variable = {x,},cp € R'”! where each
x, is the weight assigned ta-routep € P. Then we can formulate:-MFP as a linear program

in the path-flowform:

max Y, @
peEP
> xp<uy, V(ij) €A (2)
PEP;;
x(p) >0, VpeP (3)

Although linear program (1)-(3) could have exponential hemof variables, it is still solvable

in weakly polynomial time based on ti#lipsoid algorithm [13], although it is not an efficient
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procedure in practice. The idea is to provide a polynonimétsubroutine that solves tisepara-
tion problem of the linear program, that is, given a solutioeitproves the solution is feasible,
or else finds a violated constraint. In our case, we solveulaémtogram of (1)-(3). The separation
problem of the dual program is just the minimum cestoute problem (where the cost of each arc
is the dual variable associated with that arc); we only neetify that the minimum cost:.-route
betweens andt is at least 1; this problem is solvable in both weakly andrgghy polynomial time
(e.g., it can be viewed as a unit-capacity minimum cost floabf@m, for which many efficient
algorithms are available; see Chapters 9-11 of [2]).

An equivalent arc-flow linear programming formulation lenitself to more efficient algo-
rithms, as we introduce next. L&t = {j : (j,i) € A} andd;” = {j : (¢,j) € A} denote the sets
of in-neighbors and out-neighbors of vertex 1/, respectively.

Definition 1.2 Anm-route arc-flow f € R‘f‘ of valueF'/m satisfies the following flow conserva-
tion constraints (4), capacity constraints (5), as well as éxtra capacity constraints (6):

F, i=s
Zfij_iji = 0, Vi#s,t (4)
jest jes; —F, 1=t
0 < fij < wyj v(i,j) € A ()
F
0<fi < - V(i,j) € A (6)

One advantage of an arc-flow formulation over a path-flow fdation is that its specification
involves polynomial number of variables. Note that 1-MFR.(in = 1) is exactly the ordinary
maximum flow problem. By specifying: = 1 in Definition 1.1 and 1.2, we can represent any
regular 1-route flow using two forms: the path-flow and theflow. It is well-known that these
two forms are equivalent in the following sense. Given anpute path-flow, one can construct
an 1-route arc-flow with the same value(x| A|) time by summing up all the flow across any arc,
and the converse can also be done using the well-know pathgeosition inO(|V|| A|) time (see
e.g. [2], Pages 79-83). We have a similar relationship betwe-route path-flows and:-route
arc-flows. On one hand, given any-route path-flowr € R'f‘, it is easy to deduce am-route
arc-flow f € R'f' with the same value by taking; = Zpemj z,, forany arc(i, j) € A. However,
the other direction is much more involved, and it is first Bkshed by Kishimoto [17].

Theorem 1.3 (Kishimoto [17]) (i) Given anym-route arc-flowf € R'f' of value F'//m, we can
construct ann-route path-flow of the same value; (ii) moreover, this cargton can be done in



O(|A|*T)) time, whereT is the time to find a perfect matching in a bipartite graph vt +| A|)
nodes.

For example, the current best valuelgfis O(|A|(m + |A])*/?)) ([11, 14]), and hence implies
an overall time bound o (| A|*(m + | A|)'/?) for the construction in Theorem 1.3.

Aggarwal and Orlin [1] show that the time bound in TheoremdaB be improved by using a
more efficient process.

Theorem 1.4 (Aggarwal and Orlin [1]) The construction of an-route path flow from am:.-route
arc-flow can be done i (|A|T3), whereTs is the time to solve a unit-capacity 1-MFP.

For example the current best value Bf is O(min{|V|*3|A], |A|*/?}) ([3, 11]), and hence
implies an overall time bound @ (min{| A[?|V'|%/2, | A|>/2}).

Actually, the time bounds in these two theorems are absdmbtim [17] and [1], we establish
and include them here, and further repeat [1]'s constractioAppendix A for the purpose of
completeness and self-explanation. Recently Du and Kal®dufther improve the bound in
Theorem 1.4 t@)(|A[?).

According to the above discussion, as long as we can solviolibeving arc-flow linear pro-
gram, we can always obtain an optimairoute path-flow by Theorem 1.3 or Theorem 1.4.

max £ )

subjectto (4),(5), and(6) (8)

This linear program is of polynomial size and the coefficseat the constraint matrix are
bounded bym, therefore it can be solved in strongly polynomial time gsthe technique of
Tardos [26]. However, this result is impractical becausiésgioor worst-case complexity. We will
be interested in efficient strongly polynomial algorithmghis paper.

Previous Work: Kishimoto and Takeuchi [18], and Kishimoto et al [20] inugate the special
2-MFP. Kishimoto and Takeuchi [19], and Kishimoto [17] sguithe more general-MFP by
giving a strongly polynomial combinatorial algorithm whi@amounts to solvingn ordinary 1-
MFP’s, and their algorithm also implies a max-flow-min-ceiationship. While their algorithm is
simple, its analysis is complicated. Aggarwal and OrlingiMe an improved strongly polynomial
combinatorial primal-dual algorithm which solves ordinary 1-MFP’s only in the worst case.
Besides, they propose to solweMFP by binary search which results in calling the ordinary 1

MFP’s in a number of)(log(|V |Unax)), WhereUya, = max(; jjea u;j. This binary-search type

i.9)
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method isweaklypolynomial. Although this kind of algorithm can perform Wil some practical
cases, particularly for smadll,,.., its drawbacks are also obvious. First of all it may not teaue
if Unay IS irrational. Although the fact that an algorithm may nebiate with irrational data is of
little practical concern, the fact that the complexity camery high for largd/,,... is of practical
concerns. Consequently, there have also been many intémed¢signingstrongly polynomial
algorithms that serve both purposes of being theoretieaity practically efficient (e.g. [10, 26]).
Throughout this paper we will only focus on strongly polyriahalgorithms.

New Results: Both Kishimoto’s algorithm [17] and Aggarwal and Orlin’s pral-dual algo-
rithm [1] are based on the idea of reducingMFP to solving a sequence of ordinary 1-MFP’s.
This is not coincidental, and as a matter of fact both of them lce unified into one common
framework based on Newton’s method, as we will report in gfaper. An immediate benefit of
this new fact is that proofs of correctness and complexdfdbe previous two algorithms in [17]
and [1] become much easier.

Although these algorithms are efficient for this particydesblem, many combinatorial proper-
ties were not exploited and the techniques used there caerettended to deal with more general
problems, such as thultiroute minimum cost flow probleim[7] (Chapter 4) and thenultiroute
two-commodity maximum flow problam|[7] (Chapter 5) and [8]. This justifies searching for
alternative methods to solve-MFP, like an augmenting-path algorithm. However, a diggster-
alization of Ford and Fulkerson augmenting-path approaithfor this problem as observed in [1].
We shall devise a novel augmenting-path algorithm to selvéFP as our second major result in
this paper. This augmenting-path algorithm will be the loacie for solving the aforementioned
problems in [7, 8], where existing techniques cannot beiagpl

We note that the two new algorithms proposed in this papemeaialy of theoretical signifi-
cance. From practical point of view, they are not as efficeenthe existing ones in [1] in terms of
worst-case complexity. The main purpose of this paper iddldo One is to simplify and extend
the basic theory of multiroute flow by unifying existing réisunto one framework. This allows
easier treatment and deeper understanding of the problaothér is to explore the combinatorial
structure of the problem. This exploitation results in agraanting-path algorithm that serves as
the foundation for solving more general problems, such esdfttonsidered in [7, 8]. To our best
knowledge, this is the only currently known efficient (bdtledretical and practical) procedure that
can be applied to solve the aforementioned problems in [7, 8]

The rest of this paper is organized as follows. In Section pwesent a new strongly poly-



nomial combinatorial algorithm based on Newton's methad Séction 3, we explain why both
Kishimoto’s algorithm [17] and Aggarwal and Orlin’s primdual algorithm [1] can be viewed as
variants of Newton’s method. In Section 4, we present an &amgimgy-path algorithm to directly
solvem-MFP. We conclude the paper in Section 5.

2 Newton-Based Algorithm

For a given directed network = (V, A,u), ans-t cut of GG is a partition(S, S) of the vertices of
VwithS cV,S=V\S,seS, andt ¢ S. We call(i, j) an arc of(S, S) if i € S andj € S. We
define next the capacity of ant cut, which will be used in the proofs of Theorems 3.2 and 4.3.

Definition 2.1 Given ans-t cut (S, S) of G, let (i1, j1),- - -, (i¢, jo) be all arcs of(S, S) ordered
such thaty;, ;, > -+ > u,,;,. The capacity of9, S) is

4

A ¢
D Wigjy D Uigj, > Uigj,
q=1 q=2 q=m

- :

C(S,S) = min

(9)

m ~m-—1"

Any term on the right side of (9) is an upper bound on the maxinad all m-route path-flow
values. This fact is easily verified as follows. LEtbe the value of any givem-route path-
flow f. Then the total flow off across cutsS, S) is mF. Becausef is sent alongn-routes, no
cut arc(i,, j,) can route flow more thad in f for anyq € {1,---,¢}. Consider the:'® term
Zf;:k 5,/ (m — k + 1) of (9). We havenF' < (k —1)F + Zf;:k u;,j,/(m — k + 1) when arc
capacityu; ;, is replaced by forall ¢ = 1,--- |k — 1. Rearranging the previous inequality, we
obtain(m—k+1)F < Zf;:k, u;,;,/(m—k+1), which proves that thg'" term is indeed an upper
bound for anyt € {1,--- ,m — 1}.

Actually Kishimoto [17] proves the bound in (9) is also a lewmund, which implies the

following max-flow-min-cut theorem.

Theorem 2.2 (Kishimoto [17]) The maximum of ath-route path-flow values equals to the mini-

mum of alls-t cut capacities.

The above result is also implied by the two algorithms thditlve proposed in this paper.
Now we explain how our problem can be solved using Newton’thow We construct the
following one-dimensional parametric 1-MFP by parametag the right-hand side of (6) in the



aforementioned linear program (7)-(8), i.e., replacifygn by a nonnegative parameter

(X)) = max F' (10)
F, i=s

Zfij_iji: { 0, 1#s,1 (11)
jess jeo;s —F 1=t

0 < fi; < minf{u;;, A}, V(i,j) € A (12)

This formulation falls with the framework studied by Megal{P1]; so the problem can be
solved using the technique there. However, Newton’s methaalch more efficient in this case.
For comparison, we only present the worst-case complexiljegiddo’s method here, and refer
the reader to the original paper of Megiddo [21] for furthetadls: Megiddo’s method solves (10)-
(12) inO(T1 (11 + T>)) time if 1-MFP is solvable withirO(77) comparisons an@(75) additions.

Newton’s method is a classical way of solving equations sege [23]). While Newton’s
method is normally used with smooth functions, it can alsartzle applicable to piece-wise
smooth functions by some extra care of the breakpoints. Blgiblewton’s method uses an itera-
tive process to approach the roots of a function. This iseaed by proceeding along the gradient
direction at each iteration. The efficiency of New®method for combinatorial optimization is
reported in [22, 23].

It is well-known, by the linear programming duality theonydthe fact that the right-hand side
of (12), i.e.,min{w;;, A} is piece-wise linear concave, the optimal objective valuetion ()
of this linear program (10)-(12) is also a piece-wise lingamcave function of > 0. Combining
the previous construction (the parametrization), it iy¢asee that the optimal value of the linear
program (7)-(8) is theiniqueroot \* (if exists) of the following equation:

HA) =mA—pu(A) =0 (13)

See Figure 1 for an illustration on haw\ andu()) intersect to get the unique root. NowMFP
is reduced to solving a single variable equation (13).

Let G\ = (V, A, u())) be the network that is the same as the netwerk (1, A, «) but with
capacities;;(A) = min{w;;, A}, for any (i, j) € A. Note thatu()) is differentiable everywhere
except at the breakpoints; let(\) denote the derivative (or slope) at any non-breakpbif@ased
on the max-flow-min-cut theorem for the ordinary 1-MFP, glpf{ \) equals to the number of arcs
with value \ in any minimum cut of networkz,. To see this, for any minimum cdt in G, we
haveu(A) = 3_; jjec wi(A) by the max-flow-min-cut theorem for the ordinary 1-MFP. Téfere
increasing\ by a sufficiently small amount gives the desired result.
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Figure 1: The piece-wise linear concave functign) is the optimal objective value of the linear
program (10)-(12) = mA is a line with slopen that passes through the origin, apd, *) is
the intersection point of these two functions. 8ads the unique root of equation (13).

Now we apply Newton’s method to solve equation (13).

Newton’s algorithm

Input: A directed networkG = (V, A, u) with vertex setl/, arc setA, a source vertex € V, a

destination vertex € V/, a capacity vecton € R and a positive integen € 7.
Output: An optimalm-route arc-flowf* € R‘f' and its valug.*.
Step 0. (Initialization) Letk = 0, and let\;, = Up.x = max; jyea ;-

Step 1. Solve an ordinary 1-MFP i), to get an optimal 1-route arc-flofi(\x) € R‘f' and its
corresponding valug(\). If u(Ax) = mMg, then terminate and outpyt = f(\;) and

= p(Ar).

Step 2. Otherwise, let
H(A\)

N = e iy (14)
N mA — (1(Ar)
om— ()
(k) — 1 (M) A
m ) o)

k=k+1,andgotoStepl. m



U
Newton’s Algorithm
1
1
!
B[ m = mmm o m e e e
N (Z) V() —mA,,
kA (A 1/
A0 A,
b -— -
| A= A (IR
1 1 \‘
1 1
1 1Ay
1 1!
slope ! II'
1 1
=m 1 i/
o, A A

Figure 2: PointB; has coordinates)\, i(\x)), where) is the current estimate of the root of
equation (13) at thé'™" iteration in G,,.; point A, has coordinateS\y 1, mAg11), whereh,,, is
the next estimate at th& + 1)"" iteration in network’,, . ,, obtained by intersecting the line with
slopey/(\x) that passes througB, with the line . = mA; point Cy, is the intersection of the
horizontal line passing through; with the vertical line passing throudd),. The distance between
Ay andCy is A\, — A1 and that betweeB,, andCy, is pu(Ax) — mAgi1.

Step 1 in the above algorithm requires solving an ordinaMFR, for which efficient algo-
rithms are available (see Chapters 6-8 of [2]).

A geometric explanation of one iteration in Newton’s al¢jum is illustrated in Figure 2. Start-
ing from pointB;, = (A, u(A\x)) at thek'™ iteration in the networlG,,, where )\, and u(\;)
respectively are the current estimates of the root and rresponding value. We draw a line with
slopey/(\x) that passes through poil; to intersecty = mA\ at pointAy, = (Agr1, mAgy1)-
Checking the triangléAy, By, Cy) in Figure 2, we have

1 (M) Ak = Arg1) = (M) — Mg,

solving A\, 1, we get (15). This is exactly howis updated in the above Newton'’s algorithm.
The following simple fact fo7 (\) will be used in the proof Theorem 2.3, where derivatile
is defined only at non-break points.

VAS N H(A) >0, H(\) =m—/(A\) >0 (16)

Theorem 2.3 Newton'’s algorithm terminates with an optimalroute arc-flow in at most. itera-
tions, or equivalently, Newton’s algorithm terminates withagutimalm-route arc-flow by solving
the ordinary 1-MFP’s at most: times.



Proof: First, by (14) and (16) we know the estimat®d/alues decrease iteration by iteration
before the termination. Next we claim thath > 0, u(\;) < mA; before termination, which
implies the correctness of the algorithm. This can be donadhyction onk. Initially, A\g = Upax,
the claim is true. Suppos&(\r) < mA;. We want to show:(A,y1) < mAg.;. Based on the
previous geometric explanation (Figure 2), we know that; is the intersection point of the line
By A and the lineu = mA, and these two lines are never abga@ ), VA € [z, \x]. Therefore
we must havei(\;) < mAg, which implies our claim since we cannot hgve\,) = m\, before
termination.

For the total number of iterations, first note thét\,.1) > 1/(\x) becauseg:()) is a concave
function and\;;; < A,. We claimy/(M\g11) > /() before the termination. This fact directly
implies the theorem becaug& \;) is a nonnegative integer and(\;) < m (by (16)) before the
termination. Suppose on the contram(\r.1) = 1/(\x) before the termination. Therefore there
is no breakpoint betweeky, and )1, therefore botfB, = (Mg, u(Ax)) @andAyx = (Ner1, (Aks1))
lie on a same line segment with slopé ), ). Therefore

1 Akg1) = (M) = 1/ (M) A1 — Ak) = mAg1 — (M),

where the second equality follows from (15). From this, weeha A1) = mAx.1, a contradic-
tion with the fact that the algorithm did not terminate yetl

Combining Theorems 1.4 and 2.3, we have:

Corollary 2.4 m-MFP is solvable inO(mT3 + T}) time, wherels is the time to solve a 1-MFP,
andTy is the time to construct am-route path-flow from the optimah-route arc-flow.

For example the current best valueTafis O(|V'[|Allog) a;/v iog vy [V]) ([16]), and the best
value ofT} is O(|A[*) [9], and hence implies an overall time bound(im| V' || A 10g 4/ v 10g v [V I+
A]?).

3 Applications of Newton’s Algorithm

Now we explain why both Kishimoto’s algorithm [17] and Agga and Orlin’s primal-dual al-

gorithm [1] can be viewed as variants of Newton’s method.
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3.1 Kishimoto’s Algorithm

Note that Newton'’s algorithm and its analysis are stillda@s long as the following two conditions
are satisfied:

(i) The slopes increase at each iteration, A1) > 1/ (Ag), for anyk;
(i) Line B A is either strictly below or the same as lipé\), for any A € [Agi1, Agl.

Obviously (i) and (ii) still hold if/()\,,) is replaced byt in formula (15) at thet*" iteration,
which is exactly the\ update in Kishimoto’s algorithm [17]:
p(Ar) = kg

m—k

Akt = (17)

Therefore we have:

Theorem 3.1 Kishimoto’s algorithm terminates im iterations with an optimain-route arc-flow.
O

Note that the slope in Kishimoto’s algorithm increases bg each iteration, while the slope
in Newton'’s algorithm increases by at least one (since theesl’()\) also equals the number of
arcs with value\ in any minimum cut of networkx ). This implies that the step size to obtain the
next estimate o in Newton’s algorithm is no less than that in Kishimoto'sa@ithm. Therefore
Newton'’s algorithm terminates in no more iterations thashiinoto’s algorithm.

3.2 Aggarwal and Orlin’s Primal-Dual Algorithm

Aggarwal and Orlin’s primal-dual algorithm [17] is the sam®& Newton’s algorithm except that
(15) is replaced with
)\k—i-l - C(Sk7 Sk)? (18)

where(Sy,, Sy.) is a minimums-t cutinG,, at iterationk, andC/(Sy, Sy) is the cut capacity defined
in (9) of Definition 2.1 using the original capacity vectom G.

Theorem 3.2 Aggarwal and Orlin’s primal-dual algorithm terminates in@ostn iterations with
an optimalm-route arc-flow.

Proof: First, it is easy to se€k, ju(\y) < mA, sinceC(Sy, Si) defined in (9) is an upper bound
on (). This implies the correctness of the algorithm. For the neindd iterations, we prove
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Aggarwal and Orlin’s

/ et Algorithm

’ P Kewton’s Algorithm
o e .
B o ;’ — * 7 Kishimoto’s Algorithm
Rt
K e
() 3 g

slope
=m

'1 2 3
//Lk +1 S}’k +1S j’k +1 ﬂ’k A

Figure 3:)\; is the current estimate of the root of equation (13) attfieteration in networkGy,, ;
A1 Anyp, and)} | are the next estimates at tfie+1)™ iteration, updated respectively according
to the formulas (18), (15), and (17). Poirltg, A}, AZ, and A} have coordinate$);, u(\x)),
(Mo1s MmN ), (MR, mALL), (Aiiq, mA;,,), respectively, wheré;, A7, and A} are obtained
by intersecting line: = m\ with the three lines that share the same p&ipt but have different
slopes, corresponding to Aggarwal and Orlin’s primal-dalglorithm, Newton’s algorithm, and
Kishimoto’s algorithm, respectively.

this algorithm runs in no more iterations than Newton’s &lpon. Let (S, Si) be a minimums-t
cut in G, at iterationk, and let(iy, j1), - - - , (ir, jo) be all the arcs of Sy, Si) such thatu;, ;, >
S 2> Uy, > Ak > Ui, = 0 2 Ugj- S0 the number of arcs with capacities no smaller than

14
A ist. Thisimpliest = p/(\y). LetY = > w, ;.. Thenu(\y) = thy +Y = /(M) A\ + Y.

q=t+1
o
Therefore we have’; = “Cx-n s, However, by (9), we have
m—t m—p (Ag)
Miey1 = C(Sk, Sk)
14 -
‘ad y— o
= min qglu qiq o Y Y-—uiq1 o q§1 Wiyt qit+q
prg m ) Y m—t? m—t—1" 5 T

Therefore\,, < -2 = % where the last term is exactly the iteration formula (15)
used in Newton’s Algorithm. Therefore Aggarwal and Orlipismal-dual algorithm requires no

more iterations than Newton'’s algorithm, which is at mastTherefore the theorem followsO

Figure 3 summarizes the relationship among the three #gosi Note that\;., < A7, <
Ai,q. This fact implies that the step size in Kishimoto’s algamitis no more than that in New-
ton’s algorithm, which again is no more than that in Aggarauad Orlin’s primal-dual algorithm.
Therefore Kishimoto’s algorithm is no more efficient thanwitien’s algorithm, which is no more
efficient than Aggarwal and Orlin’s primal-dual algorithmterms of worst-case complexity.

12



4 Augmenting-path Algorithm for m-MFP

As observed by Aggarwal and Orlin in [1], the following ditextension of the Ford and Fulkerson
augmenting path algorithm [12] from 1-MFP te-MFP fails to find an optimal solution: identify
anm-route froms to ¢, and simultaneously augment an appropriate amount of flonga¢ach of
thesemn paths subject to the flow capacity constraints; continueitpraent until nan-route exists.

In this section we devise a novel augmenting-path algoritgrmtroducing a new concept of
m-path (Definition 4.1 (3)). This allows us to solwe-MFP by augmenting flow along an-path
instead of ann-route in each iteration.

In Section 4.1, we describe the augmenting scheme, prdsentdin algorithm and prove its
correctness. We can implement the proposed algorithm ikiywealynomial time by the standard
capacity-scaling technique for rational data (see e.d.fd2further details on this technique).
Once again, however, a direct generalization of the shepiEth idea by Dinic [6] and Edmonds
and Karp [10] for 1-MFP fails to yield a strongly polynomiaiplementation even for. = 2. This
is shown by a counterexample in Section 4.2. While we still dokmow how to implement our
algorithm in strongly polynomial time for general, we manage to achieve this for = 2 using
a new method in Section 4.3.

4.1 Main Algorithm

First, we need some preliminary definitions and notations.

Definition 4.1 Given a directed networki = (V, A, u) with vertex set/, arc setA, a source
vertexs, a destination vertex, a capacity vectomn € R‘f‘, and a positive integem € 7., let
S R‘f' be anm-route arc-flow with valug'/m.

(1) Theresidual graphG(f) = (V, A(f)) is defined as follows: any ai@, j) € A is replaced by
two arcs: theforward arc (7, j) with residual capacity ofi;; — f;;, and thebackwardarc
(4,1) with residual capacity of;;. The residual graph contains only those arcs with positive
residual capacities. Letl, (f) and A_(f) be the set of all forward and backward arcs in

G(f)-

(2) Atight arc (4, j) € A(f) is a forward arc withf;; = F/m (therefore, all backward arcs are
non-tight). LetA(f) be the set of tight arcs i6F(f), SOAr(f) C AL (f).
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Figure 4: (a) is a 2-path, which contains two paths (b) andwbkre ard3, j) is shared by both
paths

(3) Anm-path consists ofn s-t paths inG(f) such that any tight arc appears in at most one of
thesem paths. Note that am-path is not necessarily arc-disjoint; a different termiogy,
m-route, is reserved for that case as defined in Definition1).1figure 4 is an example of
2-path.

(4) Abridgeof GG(f) is an arc whose deletion leaves no directetpath.

We identify anm-path with an integer solution of the following feasibilpyyoblem defined in

the residual grapl(f):

m, 1=3S

Z Tij — Z Ty = 0, 1 75 S, t (19)
jest jes; -m, 1=t

0<m;<l1 (4,7) € Ar(f) (20)

1y =0 (ij) €A (21)

This is the feasibility problem of a typical minimum cost flgwoblem. Therefore we can
check its feasibility by transforming it into a 1-MFP (seg.€[2]). Whenever it is feasible, there
exists an integer solution such thatd < z,;; < m which can be decomposed inte paths (not
necessarily arc-disjoint) such that no tight arc appeaneri@an once due to the constraints (20).
This is exactly amn-path defined earlier. For simplicity, we refer any such sofur as anmn-path
from now on.

Now we state our main algorithm formally.

Algorithm A uG

Input: A directed networlG' = (V, A, u) with vertex set/’, arc setd, a sources € V, a destina-
tiont € V : t # s, a positive integem € Z,, and a capacity vectar € R'f'.

14



Output: An optimalm-route arc-flowf* € R‘f' and its value.*.

Step 0. (Initialization) letk = 0, and letf° ¢ R‘f' be anm-route arc-flow such that, = 0,
V(i,7) € A, and its corresponding valu&’ /m = 0.

Step 1. Find anm-pathz* in the current residual graghi( f*) by solving (19)-(21). If no such-
path exists (i.e., (19)-(21) is infeasible), then optinyak reached. The algorithm terminates
and outputsf* = f* andp* = F*/m. Otherwise letd’ (1) = {(i,j) € F(f*) : z}, = 7}
andA* (1) = {(i,j) € B(f") : «}; = 7} be the sets of forward and backwards arcs'in
with valuer, respectively, wheré < 7 < m.

Step 2. By defaultc/0 = +oc0, for any constant, so the following first formula is well-defined

even forr = 1. Let

. Ui — fi E_fi’
Oak(;y =  min  [min{ , H,
’ (i.5) €A (7) T T—1
B : fij
dar = e
ot = _min [min{dur (7, 04t () }- (22)

Generate a new:-route arc-flow, and its value as follows:

[T = fE 47k v, g) € AL (n), (23)

)

S s ) € AR (), @)

ij
FFY = FF 4omék.

Generate a new residual graph, andilet £ + 1,goto Step 1. =

The correctness of algorithmuss follows from the following two theorems: the first of which
shows that then-route arc-flow generated at each iteration in algorithaGAs again ann-route
arc-flow, provided that the previous one is; the second otlwkhows that the output is optimal

whenever the algorithm terminates.

Theorem 4.2 Given anm-route arc-flowf* € B! with valueF*/m at thek' iteration, the new
flow A+ ¢ R‘f' generated in (22), (23) and (24) at tiie + 1)** iteration is anm-route arc-flow
with valueF* /m + o*.
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Figure 5: A counterexample for 2-MFP

Proof: See Appendix B.O
Theorem 4.3 If algorithm AuG terminates, it outputs an optimat-route arc-flow.

Proof: See Appendix C.O

4.2 A Counterexample

From now on we focus on the case = 2. We will show that simple extensions of the shortest-
path (in terms of the number of arcs) idea by Dinic [6] and Eddsand Karp [10] for 1-MFP, no
longer yields strongly polynomial implementation.

There are two ways to count the number of arcs on a shortest2-p

Version 1. Each shared arc in the 2-path is counted once.
Version 2. Each shared arc in the 2-path is counted twice since theysakin both paths.

The example in Figure 5(a) shows that both versions fail.iguife 5(a), vertex is the source,
vertext is the destination, and the numbers beside the arcs arepheitas, wheré/ is a large
number. We now apply algorithmUG to this example by choosing a shortest 2-path (Versions 1

and 2) at each iteration.
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Version 1:

Step 0. flow f° = 0 with value F° = 0. Figure 5(b) is the residual gragh( /%), where the heavy
arcs are tight, and the numbers beside the arcs are theaksapacities. All arcs are tight
initially. One shortest 2-path in the current residual gréff f°) is {s — 1 —t,s — 2 — t}.
Therefored! = 1 (by (22)), and the new flow}, = fl, = fL = fl, = 1 (by (23)-(24)),

5= fi (Y0, 5) € A\{(5,1),(1,1), (5,2), (2,1)}) with F' = 2.

Step 1. Figure 5(c) is the residual graghi(f!), where the dotted arcs are backward, the heavy
arcs are tight, and the numbers beside the arcs are the absahacities. One shortest 2-
path inG(f')is {s —3 —t,s — 3 —t}. Therefores® = 1, andf3 = f3, = 3, f = [}
(V(i,5) € A\{(s,3), (3,t)}) with F? = 4,

Step 2. Figure 5(d) is the residual graph(f?), where the dotted lines are backward arcs, and
the numbers beside the arcs are the residual capacities.st@mest 2-path ir7(f?) is
{s =2 —t,s —2—t}. Therefores® = 1, andf3 = f5, = 2, f = f2 (V(i,j) €
A\{(s,2),(2,1)}) with F3 = 6.

Steps 1 and 2 will reped?( M) times before the optimal solution is found.m

Version 2: In Step 1, there are only two 2-paths: on€lis— 3 — ¢, s — 3 — ¢} with four arcs
(each shared arc counted twice), the othdkis- 2 — ¢, s — 3 — ¢} with the same number of arcs.
Therefore if we are allowed to choose any minimum 2-pathatgerithm is the same as Version
1. =

However, if we choose the second 2-péth— 2 — ¢, s — 3 — t} in Step 1. Ther? = 1, and
L= =M = =M1 f = [ (00) € A\{(5.2),(2.8). (5.3). (3,1)}) with
F? = M. Then in Step 2, the only 2-path {$ — 3 — ¢, s — 3 —t} in G(f?), s0é* = 1, and
L= =M, f}= (7)€ A\{(s,2),(2,t)}) with F* = 2M + 1. We obtain the optimal
solution after three iterations.

This particular example suggests two key points that agtiedd to strongly polynomial ter-
mination as we shall prove in the next section: first, eaclesharc is counted twice; second,
any 2-route has higher priority to be chosen than any 2-@athath is chosen only if there is no
2-route available). For example, we should chopse 2 —t, s—3—t} over{s—3—t, s—3—t}
in Step 1 of Version 2 above; and since there is no 2-routdadtaiin Step 2, the only 2-path
{s —3—1t, s—3—t}ischosen.
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4.3 Strongly Polynomial Termination for 2-MFP

We highlight the main idea on how to implement the two poifitseyved earlier. At each iteration:
(1) if there exists some 2-route, then choose a shortestioterins of minimum number of arcs);
(2) otherwise there must exist some bridges before optiynalreached, choose a shortest 2-path.

Actually we can unify cases (1) and (2) by defining a modifiesicheal graph. Supposg’
is them-route arc-flow with valuet™* /m at thek' (k > 0) iteration in algorithm AiG. Denote
Ap(f*) to be the set of all bridges in thé" residual grapht7( f*). Obviously all bridges must be
on every 2-path froms to ¢ in G(f*). We duplicate each bridgg, j) € Az(f*) by two parallel
arcs to construct a new residual gra@ti f*) = (V'(f*), A'(f*)). There always exists a 2-route
in the new residual grapfy’(f*) before optimality is reached. For any 2-route(if{ f*), we can
recover a 2-path id( f*) by merging back the parallel arcs.

Now we show that if we choose a shortest 2-rout€'iff*) at each iteration of algorithmuc
(therefore the corresponding 2-pathdiif*)), then we obtain a strongly polynomial algorithm.
The resulting algorithm will be denoted ag/&'.

To prove this, we note that at each iteration we can idertidydridges seti 5 (f*) in O(JA(f*)])
time, and obtain a shortest 2-route(t|A| + |V|log |V|) time by applying the method of Suur-
balle and Tarjan [25]. Therefore, it suffices to show thatrtbhember of iterations is bounded by a
polynomial of|V/| and|A]|.

Let o, denote the number of arcs of a shortest 2-rout@’ify*), and lets, be the number of
arcs in the union of all shortest 2-routedt( f*). Soa; < 2|V| before optimality is reached (by
defaulta, = 400 at the optimality), and, < 2|A|. The following result is an extension of a
similar result of Shrijver [24] for the ordinary 1-MFP.

Lemma 4.4 For anyk,
() arp1 > ay;
(ii) If a1 = apthenfyy < G
Proof: See Appendix D. O
Now the worst-case complexity follows immediately from #i@ve lemma.

Theorem 4.5 Algorithm AuG'’ solves 2-MFP irO(|V||A|]> + |V |?|A| log |V]) time.

18



Proof: By Lemma 4.4, there is n®-route in the residual graph after at mat|V'||A|) iterations;
For each iteration, we take(|A|) to identify all the bridges, an@(|A| + [V|log |V|) to find the
shortest 2-route using the method in [25]. In total we havgE/||A|> + |V|?|A|log [V]). O

5 Conclusions

In this paper, we present two new algorithms to soh#FP. One is based on Newton’s method,
and another is based on the augmenting-path technique. detbht two existing algorithms for
m-MFP, the algorithm by Kishimoto [17] and the primal-duagalithm by Aggarwal and Orlin
[1], can both be viewed as variants of Newton’s method. An @drate benefit of this new fact is
that proofs of correctness and complexities of the previmosalgorithms in [17] and [1] become
much easier. The augmenting-path algorithm proposed snpidgper has potential applications in
more general problems, such as thaltiroute minimum cost flow problefi] (Chapter 4) and
themultiroute two-commodity maximum flow problemii7] (Chapter 5) and [8], to which existing
techniques cannot be applied. However, the potential egadins are limited as we are only able to
implement the augmenting-path algorithm in strongly polyimal time for the special 2-MFP. An
obvious open question is therefore to design a stronglyruohial implementation for the general
m-MFP (m > 2).

Acknowledgement: We thank the anonymous referees for their numerous androetigé sug-
gestions in improving the presentation of this paper. We tidank one of the referees for pointing
out the important reference [21], which is absent in the Yiession.
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APPENDIX A

Proof of Theorem 1.4: [1] The correctness of the following algorithm is implied bgmmas 1
and 2 in [1], although not explicitly stated.

Input: An m-route arc-flowf € R‘f‘ with value F'/m on a directed networks = (V, A, u) with
capacityu € R‘f'. Based on the path-decomposition mechanism we can makelltheiifm
assumption without loss of generality: the subgrpah indume deleting all the arcs with
zero flow is acyclic (see e.g. [2], Pages 79-83).
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Output: An m-route path-flowr € R‘f' with value F'/m, whereP is the set of alin-routes from

stotind.

Step 1. Solve a unit-capacity 1-MFP by replacing the lower boundmr(a ) by |mf;;/F |, the
upper bound bymf;;/F]. Lety be an integer solution of this unit-capacity 1-MFP. Then
y corresponds to am-route such thag,; = 0 whenf;; = 0, andy;; = 1 whenf;; = F/m
(Lemma1in[1]).

Step 2.Let Ay = mln{F/m — fij DYy = 0}, andA, = mln{f” DYy = 1}, and letA =
min{A;, A, }. Updatef;; andF' as follows:

Let P be them-route induced by. Letz(P) = Ay. If F' = 0, then terminate and output an
m-route path-flow constituted by all the P)’s; otherwise, go to Step 1.m.

An arc (i, j) € Aisintermediatdf 0 < f;; < u;;. By Lemma 2 in [1], the above process can
only iterate no more than the number of intermediate archenrtitial network. Moreover each

iteration involves solving a unit-capacity 1-MFP. So thel time bound follows. O

Remark 5.1 Strictly speaking, the unit-capacity 1-MFP solved at eaelation in Step 1 of the
above algorithm may also has nonzero lower bounds (eitherX).adowever standard technique
([2], Pages 191-192) can reduce this problem to solving twielAP’s with zero lower bounds

without affecting the worst-case complexity.

APPENDIX B

Proof of Theorem 4.2: First the flow conservation constraints are easy to veridy.tke capacity

constraint) < /" < u;;, we need to show the following:

0< i]; + 76" < ug, i (i,7) € Ai(T) (25)
0< fh—70F <y, if (j,i) € A5(r). (26)

By the definition ofs* in (22), we have

ok < fEif (4,4) € AR (7). (28)

R
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Therefore (25) and (26) follow from (27) and (28), respeadivand the fact that* is anm-route

arc-flow.

L < I sk is equivalent to

Finally, the route constrairit < f

0< fli+70 < — 43" i (i,j) € AL(r) (29)
0< Z.j—7'5§E—I—5 it (j,i) € A* (7). (30)

By the definition ofs* in (22), we have

-t <Dt i e At (31)
ot < 50 (j,i) € AR (r). (32)

Therefore (29) and (30) follow from (31) and (32), respeadtiyby the same argument as before.
O

APPENDIX C

Proof of Theorem 4.3: The algorithm stops when there is nepath in the residual grapf( f),
wheref is the currentn-route arc-flow with valug’/m. This is equivalent to the infeasibility of
(19)-(21). Therefore there must exist & cut (S, S) in the original networkG such that the cut
arcs are divided into two disjoint groups

A= {(6,9) €(5,9) : fij = £ < uy;}

Ay = {(i,4) € (8,8) : fiy =iy <

-— m

satisfying

m > |A1|
| A4
> owy o= (1—=—2)F (33)
(4,5)€A2

Letw;j, > -~ > wi, 1y, @Ndu, .. = 000 2w, be the arc capacities id; and A,
respectively. By (9), the capacity 6§, S) is the following:

Xe:uq iuq > U
C(S,8) =min{"—, =2 .. Ty (34)

m m—1
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First by (33), we know thém — |A;| + 1)* term in (34) is equal to:

L

> U
q=|A1]+1 F
_ 35
m—|A]  m (35)
For anyz'" term withz < |A,|, we have

J4 l
3w, (Al =25+ X

i=z+1 > q=|A1|+1
m—z m— z
(JAi] = 2) £ + (m — A £ _F
- m—z m’

where the first inequality follows from the definition df in which each arc capacity is no smaller
than F'/m, and the second inequality follows from (35).
For anyz*" term with> > |A,|, we have

z

S o (m-ADE— Y

q=z+1 _ g=|A1|+1
m—z m—z
(m—|ADE — (2 — A £ _F
- m—z m’

where the first equality follows from (35) and the inequafiiffows from the definition ofA; in
which each arc capacity is no greater thghn. The above argument implies that the capacity of
(S,S) is equal toF/m. This again implies that we have found anroute arc-flow whose value
achieves the upper bound in (34), and hence the optimalityws. O

APPENDIX D

Proof of Lemma 4.4: Consider the following linear program:

min Z Yij (36)
(i) €A"(f¥)
2, 1=s
Dy =Y i = 0, i#s,t (37)
jest jes; -2, 1=1
0<yy; <1 ¥(i,j) e A(fY) (38)

It is obvious that any optimal integer solution of this ling@ogram corresponds to a 2-route
in G’(f*) with a minimum number of arcs.
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The dual program of (36)-(38) is:

max 2(ms — m) — Z Vij (39)
(4,5)€A’ (fF)

M- =y <1 V(i j) € A(fY) (40)

v =0 V(i 4) € A(fY) (41)

m; unrestricted, Vie V. (42)

Let y be an optimal integer solution to the linear program (3@®)(a&nd(r,y) be an optimal
solution for the dual program (39)-(42). The complementagkness conditions are the follow-

ing:
(S1) vi; =0,1.e.,—y;; = 0> —1, implies~,; = 0.
(SQ) Yij = 1>0, implieSm — T — Yij = 1.

We first show the following tow facts. For any aiicj) € A’'(f*1):
(Cl) Ty — Ty — "}/Z'j S 1, if (Z,]) € A,<fk>
(Co) m —m < —1 < L,if (i,5) ¢ A'(f").

Indeed if(i, j) € A’(f*), then ;) follows directly from the constraints of the dual problem
(D). If (i,5) € A'/(fHH\A'(f*), then(j,i) € A'(f*), and(j,4) is on a shortest 2-route i@ ( f*)
according to the flow-updating formulas (23)-(24). Thus by tomplementary slackness condi-
tion (S;), m; — m; —v;; = 1. Combining the fact that;; > 0, we obtaint; —7; = —1 —;; < —1.
This implies ().

Now let § be an optimal solution i’ ( f**1), which corresponds to a 2-route containing two
s-t pathsP, and P, and lety; . ,, ;. , be the number of arcs o, and P, respectively. Then

Op41 = Z Yij = yli+1 + y§+1~ (43)
(i,5)€ A/ (fR+1)

LetPl = (S = io,il), (il,ig), e (Z.gI,bt = igl). Then

1
Yk+1 Z Z [T("q — Mgy — Fyiqiq+1]
(igriq+1)EPINA!(fF)
+ Z [ﬂ.iq - 7T'iq+l}
(igsiq+1)EP1—A'(fF)
= Tg— Tt — Z ’yiqqu»l'

(igsig+1)EPINA!(fF)
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The first inequality comes fronty) and (). Similarly, letP, = (s = jo, 71), (J1,72),s - - -+ (Jea—1,
t = ji,). Thenwe havey;, | > o — m — 30 o cpynarse) Yigirs- SO (i) follows by summing
upy;_, andy;_,, and combining (43).

For (ii), first note that we can have equality,; = « only if each arc in path$; and P, is
also an arc ofd'(f*) due to (,). So if a1 = ay thenB,,, < Bi.. Consider the 2-pathP;, P}
(after merging the parallel arcs generated from the briddg®g the flow updating formulas (23)-
(24), at least one ar@, 7) in this 2-path either increases its flow to full capacity.(if(—ig*1 = uj;),
or decreases to zero (i.¢f;"" = 0), or becomes a tight arc (i.ef/;"' = F*'/2 < uy). In
the first two casesj, j) no longer belongs tel( '), and hence no longer belongsAd f**1).
Sofri1 < Br. We show that the third case cannot happen. Suppose otlegemwsmust have
(i,7) € Ag(f*), the set of bridges at the" iteration. So there is a bridge ii( f**!) that is tight,
and hence the algorithm reaches the optimality. This means = +oo > «y, a contradiction
with the assumption ok, = . O
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