
The Multiroute Maximum Flow Problem Revisited

Donglei Du∗ R. Chandrasekaran†

January 20, 2005

Abstract

We are given a directed networkG = (V, A, u) with vertex setV , arc setA, a source
vertexs ∈ V , a destination vertext ∈ V , a finite capacity vectoru = {uij}ij∈A, and a positive
integerm ∈ Z+. The multiroute maximum flow problem (m-MFP) generalizes the ordinary
maximum flow problem by seeking a maximum flow froms to t subject to not only the regular
flow conservation constraints at the vertices (excepts andt) and the flow capacity constraints
at the arcs, but also the extra constraints that any flow must be routed along m arc-disjoints-t
paths. In this paper, we devise two new combinatorial algorithms form-MFP. One is based
on Newton’s method and another is based on augmenting-path technique. Wealso show how
the Newton-based algorithm unifies two existing algorithms, and how the augmenting-path
algorithm is strongly polynomial for casem = 2.

Keywords Newton’s method, augmenting-path, multiroute flow, parametric flow

1 Introduction

The Problem: In the ordinary (single commodity) maximum flow problem, theobjective is to send

the maximum amount of a single commodity from a single sourceto a single destination through a

network without violating the flow conservation constraints at the vertices (except the source and

the destination) and the capacity constraints at the arcs. Since its initiation by Ford and Fulkerson

[12], the maximum flow problem has been receiving extensive treatments in the literature because

of its vast applications. The reader is referred to the book by Ahuja et al. [2] (Chapters 6-8) for

further information on this problem.

There has been recent interest in extending the ordinary maximum flow problem to themulti-

routeversion in order to provide fault-tolerance against arc failures in the network ([1, 4, 5, 7, 15,

∗Corresponding author: Faculty of Administration, University of New Brunswick, P.O. Box 4400, Fredericton,
NB, Canada, E3B 5V4, e-mail: ddu@unb.ca. Research supported in part by NSERC grant 283103

†Department of Computer Sciences, University of Texas at Dallas, Richardson, TX 75083, U.S.A., e-mail: chan-
dra@utdallas.edu

1

17], et al.). Consider, for example, a communication networkwhose arcs are liable to physical fail-

ures. In the ordinary maximum flow problem, any generic unit of flow is routed along a single path

from the source to the destination, and this unit is lost whenever an arc on the path fails. Therefore

this routing method is vulnerable even to a single arc failure. A more robust strategy is to have

equal flow in multiple disjoint routes (multiroute), i.e.,m copies of the same generic unit flow in

m disjoint paths (routes) from the source to the destination,wherem ∈ Z+. This guarantees that

even in the case ofm − 1 arc failures, at least one route will survive, and hence one copy of the

generic unit can be routed to the destination. Further applications can be found in [1].

We now formally define the problem. We introduce some notations first. For any finite setS,

let |S| denote the cardinality ofS, and letR|S|
+ denote the set of nonnegative real column vectors

with dimension|S|.

Definition 1.1 (Multiroute Maximum Flow Problem(m-MFP)): Given a directed networkG =

(V,A, u) with vertex setV , arc setA, a source vertexs ∈ V , a destination vertext ∈ V : t 6= s,

and an arc capacity vectoru = {uij}(i,j)∈A ∈ R
|A|
+ , let m ∈ Z+ be any positive integer.

(1) An m-route from s to t consists ofm arc-disjoint s-t paths. Arc(i, j) ∈ A is said to be

contained in anm-route if it is contained in somes-t path therein.

(2) Anm-route path-flowfrom s to t is an assignment of nonnegative weights tom-routes.

(3) Thevalueof the anm-route path-flow is the sum of the weights assigned.

The problem is to find anm-route path-flow of maximum value.

DenoteP to be the set of allm-routes froms to t, and denote furtherPij to be the set ofm-

routes that contain a given arc(i, j) ∈ A. Define vector variablex = {xp}p∈P ∈ R
|P|
+ , where each

xp is the weight assigned tom-routep ∈ P. Then we can formulatem-MFP as a linear program

in thepath-flowform:

max
∑

p∈P

xp (1)

∑

p∈Pij

xp ≤ uij, ∀(i, j) ∈ A (2)

x(p) ≥ 0, ∀p ∈ P (3)

Although linear program (1)-(3) could have exponential number of variables, it is still solvable

in weakly polynomial time based on theEllipsoid algorithm [13], although it is not an efficient

2

procedure in practice. The idea is to provide a polynomial-time subroutine that solves thesepara-

tion problem of the linear program, that is, given a solution, either proves the solution is feasible,

or else finds a violated constraint. In our case, we solve the dual program of (1)-(3). The separation

problem of the dual program is just the minimum costm-route problem (where the cost of each arc

is the dual variable associated with that arc); we only need to verify that the minimum costm-route

betweens andt is at least 1; this problem is solvable in both weakly and strongly polynomial time

(e.g., it can be viewed as a unit-capacity minimum cost flow problem, for which many efficient

algorithms are available; see Chapters 9-11 of [2]).

An equivalent arc-flow linear programming formulation lends itself to more efficient algo-

rithms, as we introduce next. Letδ−i = {j : (j, i) ∈ A} andδ+
i = {j : (i, j) ∈ A} denote the sets

of in-neighbors and out-neighbors of vertexi ∈ V , respectively.

Definition 1.2 Anm-route arc-flowf ∈ R
|A|
+ of valueF/m satisfies the following flow conserva-

tion constraints (4), capacity constraints (5), as well as the extra capacity constraints (6):

∑

j∈δ+

i

fij −
∑

j∈δ−i

fji =







F, i = s
0, ∀i 6= s, t

−F, i = t
(4)

0 ≤ fij ≤ uij ∀(i, j) ∈ A (5)

0 ≤ fij ≤
F

m
∀(i, j) ∈ A (6)

One advantage of an arc-flow formulation over a path-flow formulation is that its specification

involves polynomial number of variables. Note that 1-MFP (i.e.,m = 1) is exactly the ordinary

maximum flow problem. By specifyingm = 1 in Definition 1.1 and 1.2, we can represent any

regular 1-route flow using two forms: the path-flow and the arc-flow. It is well-known that these

two forms are equivalent in the following sense. Given any 1-route path-flow, one can construct

an 1-route arc-flow with the same value inO(|A|) time by summing up all the flow across any arc,

and the converse can also be done using the well-know path-decomposition inO(|V ||A|) time (see

e.g. [2], Pages 79-83). We have a similar relationship betweenm-route path-flows andm-route

arc-flows. On one hand, given anym-route path-flowx ∈ R
|P|
+ , it is easy to deduce anm-route

arc-flowf ∈ R
|A|
+ with the same value by takingfij =

∑

p∈Pij
xp, for any arc(i, j) ∈ A. However,

the other direction is much more involved, and it is first established by Kishimoto [17].

Theorem 1.3 (Kishimoto [17]) (i) Given anym-route arc-flowf ∈ R
|A|
+ of valueF/m, we can

construct anm-route path-flow of the same value; (ii) moreover, this construction can be done in

3

O(|A|2T1) time, whereT1 is the time to find a perfect matching in a bipartite graph with2(m+|A|)

nodes.

For example, the current best value ofT1 is O(|A|(m + |A|)1/2)) ([11, 14]), and hence implies

an overall time bound ofO(|A|3(m + |A|)1/2) for the construction in Theorem 1.3.

Aggarwal and Orlin [1] show that the time bound in Theorem 1.3can be improved by using a

more efficient process.

Theorem 1.4 (Aggarwal and Orlin [1]) The construction of anm-route path flow from anm-route

arc-flow can be done inO(|A|T2), whereT2 is the time to solve a unit-capacity 1-MFP.

For example the current best value ofT2 is O(min{|V |2/3|A|, |A|3/2}) ([3, 11]), and hence

implies an overall time bound ofO(min{|A|2|V |2/3, |A|5/2}).

Actually, the time bounds in these two theorems are absent inboth [17] and [1], we establish

and include them here, and further repeat [1]’s construction in Appendix A for the purpose of

completeness and self-explanation. Recently Du and Kabadi [9] further improve the bound in

Theorem 1.4 toO(|A|2).

According to the above discussion, as long as we can solve thefollowing arc-flow linear pro-

gram, we can always obtain an optimalm-route path-flow by Theorem 1.3 or Theorem 1.4.

max F
m

(7)

subject to (4), (5), and(6) (8)

This linear program is of polynomial size and the coefficients of the constraint matrix are

bounded bym, therefore it can be solved in strongly polynomial time using the technique of

Tardos [26]. However, this result is impractical because ofits poor worst-case complexity. We will

be interested in efficient strongly polynomial algorithms in this paper.

Previous Work: Kishimoto and Takeuchi [18], and Kishimoto et al [20] investigate the special

2-MFP. Kishimoto and Takeuchi [19], and Kishimoto [17] study the more generalm-MFP by

giving a strongly polynomial combinatorial algorithm which amounts to solvingm ordinary 1-

MFP’s, and their algorithm also implies a max-flow-min-cut relationship. While their algorithm is

simple, its analysis is complicated. Aggarwal and Orlin [1]give an improved strongly polynomial

combinatorial primal-dual algorithm which solvesm ordinary 1-MFP’s only in the worst case.

Besides, they propose to solvem-MFP by binary search which results in calling the ordinary 1-

MFP’s in a number ofO(log(|V |Umax)), whereUmax = max(i,j)∈A uij. This binary-search type

4

method isweaklypolynomial. Although this kind of algorithm can perform well in some practical

cases, particularly for smallUmax, its drawbacks are also obvious. First of all it may not terminate

if Umax is irrational. Although the fact that an algorithm may not ternimate with irrational data is of

little practical concern, the fact that the complexity can be very high for largeUmax is of practical

concerns. Consequently, there have also been many interestsin designingstrongly polynomial

algorithms that serve both purposes of being theoreticallyand practically efficient (e.g. [10, 26]).

Throughout this paper we will only focus on strongly polynomial algorithms.

New Results: Both Kishimoto’s algorithm [17] and Aggarwal and Orlin’s primal-dual algo-

rithm [1] are based on the idea of reducingm-MFP to solving a sequence of ordinary 1-MFP’s.

This is not coincidental, and as a matter of fact both of them can be unified into one common

framework based on Newton’s method, as we will report in thispaper. An immediate benefit of

this new fact is that proofs of correctness and complexitiesof the previous two algorithms in [17]

and [1] become much easier.

Although these algorithms are efficient for this particularproblem, many combinatorial proper-

ties were not exploited and the techniques used there cannotbe extended to deal with more general

problems, such as themultiroute minimum cost flow problemin [7] (Chapter 4) and themultiroute

two-commodity maximum flow problemin [7] (Chapter 5) and [8]. This justifies searching for

alternative methods to solvem-MFP, like an augmenting-path algorithm. However, a directgener-

alization of Ford and Fulkerson augmenting-path approach fails for this problem as observed in [1].

We shall devise a novel augmenting-path algorithm to solvem-MFP as our second major result in

this paper. This augmenting-path algorithm will be the backbone for solving the aforementioned

problems in [7, 8], where existing techniques cannot be applied.

We note that the two new algorithms proposed in this paper aremainly of theoretical signifi-

cance. From practical point of view, they are not as efficientas the existing ones in [1] in terms of

worst-case complexity. The main purpose of this paper is twofold. One is to simplify and extend

the basic theory of multiroute flow by unifying existing results into one framework. This allows

easier treatment and deeper understanding of the problem. Another is to explore the combinatorial

structure of the problem. This exploitation results in an augmenting-path algorithm that serves as

the foundation for solving more general problems, such as those considered in [7, 8]. To our best

knowledge, this is the only currently known efficient (both theoretical and practical) procedure that

can be applied to solve the aforementioned problems in [7, 8].

The rest of this paper is organized as follows. In Section 2, we present a new strongly poly-

5

nomial combinatorial algorithm based on Newton’s method. In Section 3, we explain why both

Kishimoto’s algorithm [17] and Aggarwal and Orlin’s primal-dual algorithm [1] can be viewed as

variants of Newton’s method. In Section 4, we present an augmenting-path algorithm to directly

solvem-MFP. We conclude the paper in Section 5.

2 Newton-Based Algorithm

For a given directed networkG = (V,A, u), ans-t cut of G is a partition(S, S̄) of the vertices of

V with S ⊂ V , S̄ = V \S, s ∈ S, andt /∈ S. We call(i, j) an arc of(S, S̄) if i ∈ S andj ∈ S̄. We

define next the capacity of ans-t cut, which will be used in the proofs of Theorems 3.2 and 4.3.

Definition 2.1 Given ans-t cut (S, S̄) of G, let (i1, j1), · · · , (iℓ, jℓ) be all arcs of(S, S̄) ordered

such thatui1j1 ≥ · · · ≥ uiℓjℓ
. The capacity of(S, S̄) is

C(S, S̄) = min



















ℓ
∑

q=1

uiqjq

m
,

ℓ
∑

q=2

uiqjq

m − 1
, · · · ,

ℓ
∑

q=m

uiqjq

1



















(9)

Any term on the right side of (9) is an upper bound on the maximum of all m-route path-flow

values. This fact is easily verified as follows. LetF be the value of any givenm-route path-

flow f . Then the total flow off across cut(S, S̄) is mF . Becausef is sent alongm-routes, no

cut arc(iq, jq) can route flow more thanF in f for any q ∈ {1, · · · , ℓ}. Consider thekth term
∑ℓ

q=k uiqjq
/(m − k + 1) of (9). We havemF ≤ (k − 1)F +

∑ℓ
q=k uiqjq

/(m − k + 1) when arc

capacityuiqjq
is replaced byF for all q = 1, · · · , k − 1. Rearranging the previous inequality, we

obtain(m−k +1)F ≤
∑ℓ

q=k uiqjq
/(m−k +1), which proves that thekth term is indeed an upper

bound for anyk ∈ {1, · · · ,m − 1}.

Actually Kishimoto [17] proves the bound in (9) is also a lower bound, which implies the

following max-flow-min-cut theorem.

Theorem 2.2 (Kishimoto [17]) The maximum of allm-route path-flow values equals to the mini-

mum of alls-t cut capacities.

The above result is also implied by the two algorithms that will be proposed in this paper.

Now we explain how our problem can be solved using Newton’s method. We construct the

following one-dimensional parametric 1-MFP by parameterizing the right-hand side of (6) in the

6

aforementioned linear program (7)-(8), i.e., replacingF/m by a nonnegative parameterλ.

µ(λ) = max F (10)

∑

j∈δ+

i

fij −
∑

j∈δ−i

fji =







F, i = s
0, i 6= s, t

−F, i = t
(11)

0 ≤ fij ≤ min{uij, λ}, ∀(i, j) ∈ A (12)

This formulation falls with the framework studied by Megiddo [21]; so the problem can be

solved using the technique there. However, Newton’s methodis much more efficient in this case.

For comparison, we only present the worst-case complexity of Megiddo’s method here, and refer

the reader to the original paper of Megiddo [21] for further details: Megiddo’s method solves (10)-

(12) inO(T1(T1 + T2)) time if 1-MFP is solvable withinO(T1) comparisons andO(T2) additions.

Newton’s method is a classical way of solving equations (seee.g. [23]). While Newton’s

method is normally used with smooth functions, it can also bemade applicable to piece-wise

smooth functions by some extra care of the breakpoints. Basically, Newton’s method uses an itera-

tive process to approach the roots of a function. This is achieved by proceeding along the gradient

direction at each iteration. The efficiency of Newton′s method for combinatorial optimization is

reported in [22, 23].

It is well-known, by the linear programming duality theory and the fact that the right-hand side

of (12), i.e.,min{uij, λ} is piece-wise linear concave, the optimal objective value functionµ(λ)

of this linear program (10)-(12) is also a piece-wise linearconcave function ofλ ≥ 0. Combining

the previous construction (the parametrization), it is easy to see that the optimal value of the linear

program (7)-(8) is theuniquerootλ∗ (if exists) of the following equation:

H(λ) = mλ − µ(λ) = 0 (13)

See Figure 1 for an illustration on howmλ andµ(λ) intersect to get the unique root. Nowm-MFP

is reduced to solving a single variable equation (13).

Let Gλ = (V,A, u(λ)) be the network that is the same as the networkG = (V,A, u) but with

capacitiesuij(λ) = min{uij, λ}, for any(i, j) ∈ A. Note thatµ(λ) is differentiable everywhere

except at the breakpoints; letµ′(λ) denote the derivative (or slope) at any non-breakpointλ. Based

on the max-flow-min-cut theorem for the ordinary 1-MFP, slopeµ′(λ) equals to the number of arcs

with valueλ in any minimum cut of networkGλ. To see this, for any minimum cutC in Gλ, we

haveµ(λ) =
∑

(i,j)∈C uij(λ) by the max-flow-min-cut theorem for the ordinary 1-MFP. Therefore

increasingλ by a sufficiently small amount gives the desired result.

7

= m

*

Slope

=m

*

Figure 1: The piece-wise linear concave functionµ(λ) is the optimal objective value of the linear
program (10)-(12);µ = mλ is a line with slopem that passes through the origin, and(λ∗, µ∗) is
the intersection point of these two functions. Soλ∗ is the unique root of equation (13).

Now we apply Newton’s method to solve equation (13).

Newton’s algorithm

Input: A directed networkG = (V,A, u) with vertex setV , arc setA, a source vertexs ∈ V , a

destination vertext ∈ V , a capacity vectoru ∈ R
|A|
+ , and a positive integerm ∈ Z+.

Output: An optimalm-route arc-flowf ∗ ∈ R
|A|
+ and its valueµ∗.

Step 0. (Initialization) Letk = 0, and letλk = Umax = max(i,j)∈A uij.

Step 1. Solve an ordinary 1-MFP inGλk
to get an optimal 1-route arc-flowf(λk) ∈ R

|A|
+ and its

corresponding valueµ(λk). If µ(λk) = mλk, then terminate and outputf ∗ = f(λk) and

µ∗ = µ(λk).

Step 2. Otherwise, let

λk+1 = λk −
H(λk)

H ′(λk)
(14)

= λk −
mλk − µ(λk)

m − µ′(λk)

=
µ(λk) − µ′(λk)λk

m − µ′(λk)
, (15)

k = k + 1, and go to Step 1.

8

slope

= m

k+1 k

’)A
k

B
k

C
k

k
) – m

k+1

m
k+1

k
–

k+1

k
)

= m

Newton’s Algorithm

Figure 2: PointBk has coordinates(λk, µ(λk)), whereλk is the current estimate of the root of
equation (13) at thekth iteration inGλk

; point Ak has coordinates(λk+1,mλk+1), whereλk+1 is
the next estimate at the(k + 1)th iteration in networkGλk+1

, obtained by intersecting the line with
slopeµ′(λk) that passes throughBk with the lineµ = mλ; point Ck is the intersection of the
horizontal line passing throughAk with the vertical line passing throughBk. The distance between
Ak andCk is λk − λk+1 and that betweenBk andCk is µ(λk) − mλk+1.

Step 1 in the above algorithm requires solving an ordinary 1-MFP, for which efficient algo-

rithms are available (see Chapters 6-8 of [2]).

A geometric explanation of one iteration in Newton’s algorithm is illustrated in Figure 2. Start-

ing from pointBk = (λk, µ(λk)) at thekth iteration in the networkGλk
, whereλk andµ(λk)

respectively are the current estimates of the root and its corresponding value. We draw a line with

slopeµ′(λk) that passes through pointBk to intersectµ = mλ at pointAk = (λk+1,mλk+1).

Checking the triangle(Ak, Bk, Ck) in Figure 2, we have

µ′(λk)(λk − λk+1) = µ(λk) − mλk+1,

solvingλk+1, we get (15). This is exactly howλ is updated in the above Newton’s algorithm.

The following simple fact forH(λ) will be used in the proof Theorem 2.3, where derivativeH ′

is defined only at non-break points.

∀λ ≥ λ∗ : H(λ) ≥ 0, H ′(λ) = m − µ′(λ) ≥ 0 (16)

Theorem 2.3 Newton’s algorithm terminates with an optimalm-route arc-flow in at mostm itera-

tions, or equivalently, Newton’s algorithm terminates with anoptimalm-route arc-flow by solving

the ordinary 1-MFP’s at mostm times.

9

Proof: First, by (14) and (16) we know the estimatedλ-values decrease iteration by iteration

before the termination. Next we claim that,∀k ≥ 0, µ(λk) < mλk before termination, which

implies the correctness of the algorithm. This can be done byinduction onk. Initially, λ0 = Umax,

the claim is true. Supposeµ(λk) < mλk. We want to showµ(λk+1) ≤ mλk+1. Based on the

previous geometric explanation (Figure 2), we know thatλk+1 is the intersection point of the line

BkAk and the lineµ = mλ, and these two lines are never aboveµ(λ), ∀λ ∈ [λk+1, λk]. Therefore

we must haveµ(λk) ≤ mλk, which implies our claim since we cannot haveµ(λk) = mλk before

termination.

For the total number of iterations, first note thatµ′(λk+1) ≥ µ′(λk) becauseµ(λ) is a concave

function andλk+1 ≤ λk. We claimµ′(λk+1) > µ′(λk) before the termination. This fact directly

implies the theorem becauseµ′(λk) is a nonnegative integer andµ′(λk) < m (by (16)) before the

termination. Suppose on the contrary,µ′(λk+1) = µ′(λk) before the termination. Therefore there

is no breakpoint betweenλk andλk+1, therefore bothBk = (λk, µ(λk)) andAk = (λk+1, µ(λk+1))

lie on a same line segment with slopeµ′(λk). Therefore

µ(λk+1) − µ(λk) = µ′(λk)(λk+1 − λk) = mλk+1 − µ(λk),

where the second equality follows from (15). From this, we have µ(λk+1) = mλk+1, a contradic-

tion with the fact that the algorithm did not terminate yet.2

Combining Theorems 1.4 and 2.3, we have:

Corollary 2.4 m-MFP is solvable inO(mT3 + T4) time, whereT3 is the time to solve a 1-MFP,

andT4 is the time to construct anm-route path-flow from the optimalm-route arc-flow.

For example the current best value ofT3 is O(|V ||A| log|A|/(|V | log |V |) |V |) ([16]), and the best

value ofT4 isO(|A|2) [9], and hence implies an overall time bound ofO(m|V ||A| log|A|/(|V | log |V |) |V |+

|A|2).

3 Applications of Newton’s Algorithm

Now we explain why both Kishimoto’s algorithm [17] and Aggarwal and Orlin’s primal-dual al-

gorithm [1] can be viewed as variants of Newton’s method.

10

3.1 Kishimoto’s Algorithm

Note that Newton’s algorithm and its analysis are still valid as long as the following two conditions

are satisfied:

(i) The slopes increase at each iteration, i.e.,µ′(λk+1) > µ′(λk), for anyk;

(ii) Line BkAk is either strictly below or the same as lineµ(λ), for anyλ ∈ [λk+1, λk].

Obviously (i) and (ii) still hold ifµ′(λk) is replaced byk in formula (15) at thekth iteration,

which is exactly theλ update in Kishimoto’s algorithm [17]:

λk+1 =
µ(λk) − kλk

m − k
(17)

Therefore we have:

Theorem 3.1 Kishimoto’s algorithm terminates inm iterations with an optimalm-route arc-flow.

2

Note that the slope in Kishimoto’s algorithm increases by one each iteration, while the slope

in Newton’s algorithm increases by at least one (since the slopeµ′(λ) also equals the number of

arcs with valueλ in any minimum cut of networkGλ). This implies that the step size to obtain the

next estimate ofλ in Newton’s algorithm is no less than that in Kishimoto’s algorithm. Therefore

Newton’s algorithm terminates in no more iterations than Kishimoto’s algorithm.

3.2 Aggarwal and Orlin’s Primal-Dual Algorithm

Aggarwal and Orlin’s primal-dual algorithm [17] is the sameas Newton’s algorithm except that

(15) is replaced with

λk+1 = C(Sk, S̄k), (18)

where(Sk, S̄k) is a minimums-t cut inGλk
at iterationk, andC(Sk, S̄k) is the cut capacity defined

in (9) of Definition 2.1 using the original capacity vectoru in G.

Theorem 3.2 Aggarwal and Orlin’s primal-dual algorithm terminates in atmostm iterations with

an optimalm-route arc-flow.

Proof: First, it is easy to see∀k, µ(λk) ≤ mλk, sinceC(Sk, S̄k) defined in (9) is an upper bound

on µ(λk). This implies the correctness of the algorithm. For the number of iterations, we prove

11

slope

=m

k
2
+1 k

A2
k

Bk
(k)

= m

Newton’s Algorithm

Aggarwal and Orlin’s

Algorithm

Kishimoto’s Algorithm

k
1
+1 k

3
+1

A1
k

A3
k

Figure 3:λk is the current estimate of the root of equation (13) at thekth iteration in networkGλk
;

λ1
k+1, λ

2
k+1, andλ3

k+1 are the next estimates at the(k+1)th iteration, updated respectively according
to the formulas (18), (15), and (17). PointsBk, A1

k, A2
k, andA3

k have coordinates(λk, µ(λk)),
(λ1

k+1,mλ1
k+1), (λ2

k+1,mλ2
k+1), (λ3

k+1,mλ3
k+1), respectively, whereA1

k, A2
k, andA3

k are obtained
by intersecting lineµ = mλ with the three lines that share the same pointBk, but have different
slopes, corresponding to Aggarwal and Orlin’s primal-dualalgorithm, Newton’s algorithm, and
Kishimoto’s algorithm, respectively.

this algorithm runs in no more iterations than Newton’s algorithm. Let(Sk, S̄k) be a minimums-t

cut in Gλk
at iterationk, and let(i1, j1), · · · , (iℓ, jℓ) be all the arcs of(Sk, S̄k) such thatui1j1 ≥

· · · ≥ uitjt
≥ λk > uit+1jt+1

≥ · · · ≥ uiℓjℓ
. So the number of arcs with capacities no smaller than

λk is t. This impliest = µ′(λk). Let Y =
ℓ

∑

q=t+1

uiqjq
. Thenµ(λk) = tλk + Y = µ′(λk)λk + Y .

Therefore we haveY
m−t

= µ(λk)−µ′(λk)λk

m−µ′(λk)
. However, by (9), we have

λk+1 = C(Sk, S̄k)

= min







ℓ
∑

q=1

uiqjq

m
, · · · , Y

m−t
, Y −ut+1

m−t−1
, · · · ,

Y −
m−1
∑

q=1

uit+qjt+q

1







.

Thereforeλk+1 ≤ Y
m−t

= µ(λk)−µ′(λk)λk

m−µ′(λk)
, where the last term is exactly the iteration formula (15)

used in Newton’s Algorithm. Therefore Aggarwal and Orlin’sprimal-dual algorithm requires no

more iterations than Newton’s algorithm, which is at mostm. Therefore the theorem follows.2

Figure 3 summarizes the relationship among the three algorithms. Note thatλ1
k+1 ≤ λ2

k+1 ≤

λ3
k+1. This fact implies that the step size in Kishimoto’s algorithm is no more than that in New-

ton’s algorithm, which again is no more than that in Aggarwaland Orlin’s primal-dual algorithm.

Therefore Kishimoto’s algorithm is no more efficient than Newton’s algorithm, which is no more

efficient than Aggarwal and Orlin’s primal-dual algorithm in terms of worst-case complexity.

12

4 Augmenting-path Algorithm for m-MFP

As observed by Aggarwal and Orlin in [1], the following direct extension of the Ford and Fulkerson

augmenting path algorithm [12] from 1-MFP tom-MFP fails to find an optimal solution: identify

anm-route froms to t, and simultaneously augment an appropriate amount of flow along each of

thesem paths subject to the flow capacity constraints; continue to augment until nom-route exists.

In this section we devise a novel augmenting-path algorithmby introducing a new concept of

m-path (Definition 4.1 (3)). This allows us to solvem-MFP by augmenting flow along anm-path

instead of anm-route in each iteration.

In Section 4.1, we describe the augmenting scheme, present the main algorithm and prove its

correctness. We can implement the proposed algorithm in weakly polynomial time by the standard

capacity-scaling technique for rational data (see e.g., [2] for further details on this technique).

Once again, however, a direct generalization of the shortest-path idea by Dinic [6] and Edmonds

and Karp [10] for 1-MFP fails to yield a strongly polynomial implementation even form = 2. This

is shown by a counterexample in Section 4.2. While we still do not know how to implement our

algorithm in strongly polynomial time for generalm, we manage to achieve this form = 2 using

a new method in Section 4.3.

4.1 Main Algorithm

First, we need some preliminary definitions and notations.

Definition 4.1 Given a directed networkG = (V,A, u) with vertex setV , arc setA, a source

vertexs, a destination vertext, a capacity vectoru ∈ R
|A|
+ , and a positive integerm ∈ Z+, let

f ∈ R
|A|
+ be anm-route arc-flow with valueF/m.

(1) Theresidual graphG(f) = (V,A(f)) is defined as follows: any arc(i, j) ∈ A is replaced by

two arcs: theforward arc (i, j) with residual capacity ofuij − fij, and thebackwardarc

(j, i) with residual capacity offij. The residual graph contains only those arcs with positive

residual capacities. LetA+(f) andA−(f) be the set of all forward and backward arcs in

G(f).

(2) A tight arc (i, j) ∈ A(f) is a forward arc withfij = F/m (therefore, all backward arcs are

non-tight). LetAT (f) be the set of tight arcs inG(f), soAT (f) ⊂ A+(f).

13

s i j t

s ti j
(b)

s ti j(a)

(c)

Figure 4: (a) is a 2-path, which contains two paths (b) and (c), where arc(i, j) is shared by both
paths

(3) An m-path consists ofm s-t paths inG(f) such that any tight arc appears in at most one of

thesem paths. Note that anm-path is not necessarily arc-disjoint; a different terminology,

m-route, is reserved for that case as defined in Definition 1.1(1). Figure 4 is an example of

2-path.

(4) A bridgeof G(f) is an arc whose deletion leaves no directeds-t path.

We identify anm-path with an integer solution of the following feasibilityproblem defined in

the residual graphG(f):

∑

j∈δ+

i

xij −
∑

j∈δ−i

xji =







m, i = s
0, i 6= s, t

−m, i = t
(19)

0 ≤ xij ≤ 1 (i, j) ∈ AT (f) (20)

xij ≥ 0 (i, j) ∈ A (21)

This is the feasibility problem of a typical minimum cost flowproblem. Therefore we can

check its feasibility by transforming it into a 1-MFP (see e.g. [2]). Whenever it is feasible, there

exists an integer solutionx such that0 ≤ xij ≤ m which can be decomposed intom paths (not

necessarily arc-disjoint) such that no tight arc appears more than once due to the constraints (20).

This is exactly anm-path defined earlier. For simplicity, we refer any such solution x as anm-path

from now on.

Now we state our main algorithm formally.

Algorithm A UG

Input: A directed networkG = (V,A, u) with vertex setV , arc setA, a sources ∈ V , a destina-

tion t ∈ V : t 6= s, a positive integerm ∈ Z+, and a capacity vectoru ∈ R
|A|
+ .

14

Output: An optimalm-route arc-flowf ∗ ∈ R
|A|
+ and its valueµ∗.

Step 0. (Initialization) let k = 0, and letf 0 ∈ R
|A|
+ be anm-route arc-flow such thatf 0

ij = 0,

∀(i, j) ∈ A, and its corresponding valueF 0/m = 0.

Step 1. Find anm-pathxk in the current residual graphG(fk) by solving (19)-(21). If no suchm-

path exists (i.e., (19)-(21) is infeasible), then optimality is reached. The algorithm terminates

and outputsf ∗ = fk andµ∗ = F k/m. Otherwise letAk
+(τ) = {(i, j) ∈ F (fk) : xk

ij = τ}

andAk
−(τ) = {(i, j) ∈ B(fk) : xk

ij = τ} be the sets of forward and backwards arcs inxk

with valueτ , respectively, where1 ≤ τ ≤ m.

Step 2. By defaultc/0 = +∞, for any constantc, so the following first formula is well-defined

even forτ = 1. Let

δAk
+

(τ) = min
(i,j)∈Ak

+
(τ)

[min{
uij − fij

τ
,

F
m
− fij

τ − 1
}],

δAk
−(τ) = min

(j,i)∈Ak
−(τ)

{
fij

τ
},

δk = min
τ=1,··· ,m

[min{δAk
+

(τ), δAk
+

(τ)}]. (22)

Generate a newm-route arc-flow, and its value as follows:

fk+1
ij = fk

ij + τδk, ∀(i, j) ∈ Ak
+(τ), (23)

fk+1
ij = fk

ij − τδk, ∀(j, i) ∈ Ak
−(τ), (24)

F k+1 = F k + mδk.

Generate a new residual graph, and letk = k + 1, go to Step 1.

The correctness of algorithm AUG follows from the following two theorems: the first of which

shows that them-route arc-flow generated at each iteration in algorithm AUG is again anm-route

arc-flow, provided that the previous one is; the second of which shows that the output is optimal

whenever the algorithm terminates.

Theorem 4.2 Given anm-route arc-flowfk ∈ R
|A|
+ with valueF k/m at thekth iteration, the new

flowfk+1 ∈ R
|A|
+ generated in (22), (23) and (24) at the(k + 1)th iteration is anm-route arc-flow

with valueF k/m + δk.

15

s t

1

M

M

M

1

1

M

2

3

(a)

s t

1

M

M

M

1

1

M

2

3

(b)

s t

1

M -1

M

M -1

1

1

M

2

3

1 1

(c)

s t

1

M -1

M -2

M -1

1

1

M -2

2

3

1 1

2 2

(d)

Figure 5: A counterexample for 2-MFP

Proof: See Appendix B. 2

Theorem 4.3 If algorithm AUG terminates, it outputs an optimalm-route arc-flow.

Proof: See Appendix C.2

4.2 A Counterexample

From now on we focus on the casem = 2. We will show that simple extensions of the shortest-

path (in terms of the number of arcs) idea by Dinic [6] and Edmonds and Karp [10] for 1-MFP, no

longer yields strongly polynomial implementation.

There are two ways to count the number of arcs on a shortest 2-path:

Version 1. Each shared arc in the 2-path is counted once.

Version 2. Each shared arc in the 2-path is counted twice since they are used in both paths.

The example in Figure 5(a) shows that both versions fail. In Figure 5(a), vertexs is the source,

vertext is the destination, and the numbers beside the arcs are the capacities, whereM is a large

number. We now apply algorithm AUG to this example by choosing a shortest 2-path (Versions 1

and 2) at each iteration.

16

Version 1:

Step 0. flow f 0 = 0 with valueF 0 = 0. Figure 5(b) is the residual graphG(f 0), where the heavy

arcs are tight, and the numbers beside the arcs are the residual capacities. All arcs are tight

initially. One shortest 2-path in the current residual graph G(f 0) is {s − 1 − t, s − 2 − t}.

Thereforeδ1 = 1 (by (22)), and the new flowf 1
s1 = f 1

1t = f 1
s2 = f 1

2t = 1 (by (23)-(24)),

f 1
ij = f 0

ij, (∀(i, j) ∈ A\{(s, 1), (1, t), (s, 2), (2, t)}) with F 1 = 2.

Step 1. Figure 5(c) is the residual graphG(f 1), where the dotted arcs are backward, the heavy

arcs are tight, and the numbers beside the arcs are the residual capacities. One shortest 2-

path inG(f 1) is {s − 3 − t, s − 3 − t}. Thereforeδ2 = 1, andf 2
s3 = f 2

3t = 3, f 2
ij = f 1

ij

(∀(i, j) ∈ A\{(s, 3), (3, t)}) with F 2 = 4.

Step 2. Figure 5(d) is the residual graphG(f 2), where the dotted lines are backward arcs, and

the numbers beside the arcs are the residual capacities. Oneshortest 2-path inG(f 2) is

{s − 2 − t, s − 2 − t}. Thereforeδ3 = 1, and f 3
s2 = f 3

2t = 2, f 3
ij = f 2

ij (∀(i, j) ∈

A\{(s, 2), (2, t)}) with F 3 = 6.

Steps 1 and 2 will repeatO(M) times before the optimal solution is found.

Version 2: In Step 1, there are only two 2-paths: one is{s − 3 − t, s − 3 − t} with four arcs

(each shared arc counted twice), the other is{s− 2− t, s− 3− t} with the same number of arcs.

Therefore if we are allowed to choose any minimum 2-path, thealgorithm is the same as Version

1.

However, if we choose the second 2-path{s − 2 − t, s − 3 − t} in Step 1. Thenδ2 = 1, and

f 2
s2 = f 2

2t = M, f 2
s3 = f 2

3t = M − 1, f 2
ij = f 1

ij (∀(i, j) ∈ A\{(s, 2), (2, t), (s, 3), (3, t)}) with

F 2 = M . Then in Step 2, the only 2-path is{s − 3 − t, s − 3 − t} in G(f 2), soδ3 = 1, and

f 3
s2 = f 3

2t = M , f 3
ij = f 2

ij (∀(i, j) ∈ A\{(s, 2), (2, t)}) with F 3 = 2M + 1. We obtain the optimal

solution after three iterations.

This particular example suggests two key points that actually lead to strongly polynomial ter-

mination as we shall prove in the next section: first, each shared arc is counted twice; second,

any 2-route has higher priority to be chosen than any 2-path (a 2-path is chosen only if there is no

2-route available). For example, we should choose{s−2− t, s−3− t} over{s−3− t, s−3− t}

in Step 1 of Version 2 above; and since there is no 2-route available in Step 2, the only 2-path

{s − 3 − t, s − 3 − t} is chosen.

17

4.3 Strongly Polynomial Termination for 2-MFP

We highlight the main idea on how to implement the two points observed earlier. At each iteration:

(1) if there exists some 2-route, then choose a shortest one (in terms of minimum number of arcs);

(2) otherwise there must exist some bridges before optimality is reached, choose a shortest 2-path.

Actually we can unify cases (1) and (2) by defining a modified residual graph. Supposefk

is them-route arc-flow with valueF k/m at thekth (k ≥ 0) iteration in algorithm AUG. Denote

AB(fk) to be the set of all bridges in thekth residual graphG(fk). Obviously all bridges must be

on every 2-path froms to t in G(fk). We duplicate each bridge(i, j) ∈ AB(fk) by two parallel

arcs to construct a new residual graphG′(fk) = (V ′(fk), A′(fk)). There always exists a 2-route

in the new residual graphG′(fk) before optimality is reached. For any 2-route inG′(fk), we can

recover a 2-path inG(fk) by merging back the parallel arcs.

Now we show that if we choose a shortest 2-route inG′(fk) at each iteration of algorithm AUG

(therefore the corresponding 2-path inG(fk)), then we obtain a strongly polynomial algorithm.

The resulting algorithm will be denoted as AUG′.

To prove this, we note that at each iteration we can identify the bridges setAB(fk) in O(|A(fk)|)

time, and obtain a shortest 2-route inO(|A| + |V | log |V |) time by applying the method of Suur-

balle and Tarjan [25]. Therefore, it suffices to show that thenumber of iterations is bounded by a

polynomial of|V | and|A|.

Let αk denote the number of arcs of a shortest 2-route inG′(fk), and letβk be the number of

arcs in the union of all shortest 2-route inG′(fk). Soαk ≤ 2|V | before optimality is reached (by

defaultαk = +∞ at the optimality), andβk ≤ 2|A|. The following result is an extension of a

similar result of Shrijver [24] for the ordinary 1-MFP.

Lemma 4.4 For anyk,

(i) αk+1 ≥ αk;

(ii) If αk+1 = αk thenβk+1 < βk.

Proof: See Appendix D. 2

Now the worst-case complexity follows immediately from theabove lemma.

Theorem 4.5 AlgorithmAUG′ solves 2-MFP inO(|V ||A|2 + |V |2|A| log |V |) time.

18

Proof: By Lemma 4.4, there is no2-route in the residual graph after at mostO(|V ||A|) iterations;

For each iteration, we takeO(|A|) to identify all the bridges, andO(|A| + |V | log |V |) to find the

shortest 2-route using the method in [25]. In total we haveO(|V ||A|2 + |V |2|A| log |V |). 2

5 Conclusions

In this paper, we present two new algorithms to solvem-MFP. One is based on Newton’s method,

and another is based on the augmenting-path technique. We show that two existing algorithms for

m-MFP, the algorithm by Kishimoto [17] and the primal-dual algorithm by Aggarwal and Orlin

[1], can both be viewed as variants of Newton’s method. An immediate benefit of this new fact is

that proofs of correctness and complexities of the previoustwo algorithms in [17] and [1] become

much easier. The augmenting-path algorithm proposed in this paper has potential applications in

more general problems, such as themultiroute minimum cost flow problem[7] (Chapter 4) and

themultiroute two-commodity maximum flow problemin [7] (Chapter 5) and [8], to which existing

techniques cannot be applied. However, the potential applications are limited as we are only able to

implement the augmenting-path algorithm in strongly polynomial time for the special 2-MFP. An

obvious open question is therefore to design a strongly polynomial implementation for the general

m-MFP (m > 2).

Acknowledgement: We thank the anonymous referees for their numerous and constructive sug-

gestions in improving the presentation of this paper. We also thank one of the referees for pointing

out the important reference [21], which is absent in the firstversion.

References

[1] C. C. Aggarwal and J. B. Orlin, On Multiroute Maximum Flows inNetworks,Networks, 39(1),

2002, 43-52.

[2] R. K. Ahuja, T. L. Maganti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Appli-

cations, Prentice-Hall, Engle-Wood Cliffs, NJ, 1993.

[3] R. K. Ahuja and J. B. Orlin, Distance-directed Augmenting Path Algorithms for Maximum

Flow and Parametric Maximum Flow Problems,Naval Research Logistics Quarterly,38, 1991,

413-430.

19

[4] Y. P. Aneja, R. Chandrasekaran, S. N. Kabadi, and K. P. K. Nair, Flows over Edge-Disjoint

Mixed Multipaths and Applications,Working Paper, Faculty of Administration, University of

New Brunswick, 2002.

[5] R. Chandrasekaran, K. P. K. Nair, Y. P. Aneja, and S. N. Kabadi, Multi-Terminal Multipath

Flows: Synthesis,Discrete Applied Mathematics, 143, 2004, 182-193.

[6] E. A. Dinic, Algorithm for Solution of a Problem of Maximum Flow in a Network with Power

Estimation,Soviet Mathematics Doklady,11, 1970, 1227-1280.

[7] D. Du, Multiroute Flow Problem,PhD Thesis, The University of Texas at Dallas, 2003.

[8] D. Du and R. Chandrasekran, The Multiroute Two-commodity Maximum Flow Problem,

Working Paper, The University of Texas at Dallas, 2002.

[9] D. Du and S. N. Kabadi, An Improved Algorithm for Decomposing Arc Flows into Multipath

Flows, accepted for publication inOperations Research Letters, 2005.

[10] J. Edmonds and R. M. Karp, Theoretical Improvements in Algorithmic Efficiency for Net-

work Flow Problems,Journal of ACM,19, 1972, 248-264.

[11] S. Even and R. E. Tarjan, Network Flow and Testing Graph Connectivity, Siam Journal on

Computing,4, 1975, 507-518.

[12] L. R. Ford and D. R. Fulkerson, Maximal Flow Through a Network, Canadian Journal of

Mathematics, 39, 1956, 399-404.

[13] M. Grotschel, L. Lovasz, and A. Shrijver, Geometric Algorithms and Combinatorial Opti-

mization, Springer-Verlag, Berlin, 1988.

[14] J. E. Hopcroft, R. E. Tarjan, Ann5/2 Algorithm for Maximum Matchings in Bipartite Graphs,

SIAM Journal on Computing, 2, 1973, 135-158.

[15] S. N. Kabadi, R. Chandrasekaran, K. P. K. Nair, and Y. P. Aneja, Integer Version of Multipath

Flow Network Synthesis Problem,Working Paper, Faculty of Administration, University of

New Brunswick, 2003.

[16] V. King, S. Rao, and R. E. Tarjan, A Faster Deterministic Maximum Flow Algorithm,Journal

of Algorithms, 17, 1994, 447-474.

20

[17] W. Kishimoto, A Method for Obtaining the Maximum Multiroute Flows in a Network,Net-

works, 27(4), July 1996, 279-291.

[18] W. Kishimoto and M. Takeuchi, On Two-route Flows in an Undirected Network,IEICE Tech-

nical Report, CAS90-19, DSP-90-23, 1990 (in Japanese).

[19] W. Kishimoto and M. Takeuchi, On M-route Flows in a Network, IEICE Trans J-76-A, 1993,

1185-1200.

[20] W. Kishimoto, M. Takeuchi, and G. Kishi, Two-route Flows in an Undirected Flow Network,

IEICE Trans J-75-A, 1992, 1699-1717 (in Japanese).

[21] N. Megiddo, Combinatorial Optimization with Rational Objective Functions,Mathematics of

Operations Research, 4(4), 1979, 414-424.

[22] T. Radzik, Newton’s Method for Fractional CombinatorialOptimization,Proceedings of 33rd

IEEE Symposium on FOCS, 1992, 659-669.

[23] T. Radzik, Fractional Combinatorial Optimization, InHandbook of Combinatorial Optimiza-

tion, editors D-Z. Du and P. Pardalos, Vol.1, Kluwer Academic Publishers, 1998, 429-478.

[24] A. Shrijver, Theory of Linear Programming and Integer Programming, John Wiley, New

York, 1986, 153-155.

[25] J. W. Suurballe and R. E. Tarjan, A Quick Method for Finding Shortest Pair of Disjoint Paths,

Networks, 14, 1984, 325-331.

[26] E. Tardos, A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs,Op-

erations Research, 34, 1986, 250-256.

APPENDIX A

Proof of Theorem 1.4: [1] The correctness of the following algorithm is implied byLemmas 1

and 2 in [1], although not explicitly stated.

Input: An m-route arc-flowf ∈ R
|A|
+ with valueF/m on a directed networkG = (V,A, u) with

capacityu ∈ R
|A|
+ . Based on the path-decomposition mechanism we can make the following

assumption without loss of generality: the subgrpah induced by deleting all the arcs with

zero flow is acyclic (see e.g. [2], Pages 79-83).

21

Output: An m-route path-flowx ∈ R
|P|
+ with valueF/m, whereP is the set of allm-routes from

s to t in G.

Step 1. Solve a unit-capacity 1-MFP by replacing the lower bound on arc (i, j) by ⌊mfij/F ⌋, the

upper bound by⌈mfij/F ⌉. Let y be an integer solution of this unit-capacity 1-MFP. Then

y corresponds to anm-route such thatyij = 0 whenfij = 0, andyij = 1 whenfij = F/m

(Lemma 1 in [1]).

Step 2. Let ∆1 = min{F/m − fij : yij = 0}, and∆2 = min{fij : yij = 1}, and let∆ =

min{∆1, ∆2}. Updatefij andF as follows:

f : = f − ∆y

F : = F − m∆.

Let P be them-route induced byy. Let x(P) = ∆y. If F = 0, then terminate and output an

m-route path-flow constituted by all thex(P)’s; otherwise, go to Step 1. .

An arc(i, j) ∈ A is intermediateif 0 < fij < uij. By Lemma 2 in [1], the above process can

only iterate no more than the number of intermediate arcs in the initial network. Moreover each

iteration involves solving a unit-capacity 1-MFP. So the overall time bound follows. 2

Remark 5.1 Strictly speaking, the unit-capacity 1-MFP solved at each iteration in Step 1 of the

above algorithm may also has nonzero lower bounds (either 0 or1). However standard technique

([2], Pages 191-192) can reduce this problem to solving two 1-MFP’s with zero lower bounds

without affecting the worst-case complexity.

APPENDIX B

Proof of Theorem 4.2:First the flow conservation constraints are easy to verify. For the capacity

constraint0 ≤ fk+1
ij ≤ uij, we need to show the following:

0 ≤ fk
ij + τδk ≤ uij, if (i, j) ∈ Ak

+(τ) (25)

0 ≤ fk
ij − τδk ≤ uij, if (j, i) ∈ Ak

−(τ). (26)

By the definition ofδk in (22), we have

τδk ≤ uij − fk
ij, if (i, j) ∈ Ak

+(τ) (27)

τδk ≤ fk
ij, if (j, i) ∈ Ak

−(τ). (28)

22

Therefore (25) and (26) follow from (27) and (28), respectively, and the fact thatfk is anm-route

arc-flow.

Finally, the route constraint0 ≤ fk+1
ij ≤ F k

m
+ δk is equivalent to

0 ≤ fk
ij + τδ ≤

F k

m
+ δk, if (i, j) ∈ Ak

+(τ) (29)

0 ≤ fk
ij − τδ ≤

F k

m
+ δk if (j, i) ∈ Ak

−(τ). (30)

By the definition ofδk in (22), we have

(τ − 1)δk ≤
F k

m
− fk

ij, if (i, j) ∈ Ak
+(τ) (31)

τδk ≤ fk
ij, if (j, i) ∈ Ak

−(τ). (32)

Therefore (29) and (30) follow from (31) and (32), respectively, by the same argument as before.

2

APPENDIX C

Proof of Theorem 4.3: The algorithm stops when there is nom-path in the residual graphG(f),

wheref is the currentm-route arc-flow with valueF/m. This is equivalent to the infeasibility of

(19)-(21). Therefore there must exist ans-t cut (S, S̄) in the original networkG such that the cut

arcs are divided into two disjoint groups

A1 = {(i, j) ∈ (S, S̄) : fij = F
m

< uij}

A2 = {(i, j) ∈ (S, S̄) : fij = uij ≤
F
m
}

satisfying

m > |A1|
∑

(i,j)∈A2

uij = (1 −
|A1|

m
)F. (33)

Let ui1j1 ≥ · · · ≥ ui|A1|
j|A1|

andui|A1|+1j|A1|+1
≥ · · · ≥ uiℓjℓ

be the arc capacities inA1 andA2

respectively. By (9), the capacity of(S, S̄) is the following:

C(S, S̄) = min{

ℓ
∑

q=1

uq

m
,

ℓ
∑

q=2

uq

m − 1
, · · · ,

ℓ
∑

q=m

uq

1
}. (34)

23

First by (33), we know the(m − |A1| + 1)th term in (34) is equal to:

ℓ
∑

q=|A1|+1

ui

m − |A1|
=

F

m
. (35)

For anyzth term withz < |A1|, we have

ℓ
∑

i=z+1

uq

m − z
≥

(|A1| − z) F
m

+
ℓ

∑

q=|A1|+1

uq

m − z

≥
(|A1| − z) F

m
+ (m − |A1|)

F
m

m − z
=

F

m
,

where the first inequality follows from the definition ofA1 in which each arc capacity is no smaller

thanF/m, and the second inequality follows from (35).

For anyzth term withz > |A1|, we have

l
∑

q=z+1

ui

m − z
=

(m − |A1|)
F
m
−

z
∑

q=|A1|+1

uq

m − z

≥
(m − |A1|)

F
m
− (z − |A1|)

F
m

m − z
=

F

m
,

where the first equality follows from (35) and the inequalityfollows from the definition ofA2 in

which each arc capacity is no greater thanF/m. The above argument implies that the capacity of

(S, S̄) is equal toF/m. This again implies that we have found anm-route arc-flow whose value

achieves the upper bound in (34), and hence the optimality follows. 2

APPENDIX D

Proof of Lemma 4.4: Consider the following linear program:

min
∑

(i,j)∈A′(fk)

yij (36)

∑

j∈δ+

i

yij −
∑

j∈δ−i

yji =







2, i = s
0, i 6= s, t

−2, i = t
(37)

0 ≤ yij ≤ 1 ∀(i, j) ∈ A′(fk). (38)

It is obvious that any optimal integer solution of this linear program corresponds to a 2-route

in G′(fk) with a minimum number of arcs.

24

The dual program of (36)-(38) is:

max 2(πs − πt) −
∑

(i,j)∈A′(fk)

γij (39)

πi − πj − γij ≤ 1 ∀(i, j) ∈ A′(fk) (40)

γij ≥ 0 ∀(i, j) ∈ A′(fk) (41)

πi unrestricted, ∀i ∈ V. (42)

Let y be an optimal integer solution to the linear program (36)-(38), and(π, γ) be an optimal

solution for the dual program (39)-(42). The complementaryslackness conditions are the follow-

ing:

(S1) yij = 0, i.e.,−yij = 0 > −1, impliesγij = 0.

(S2) yij = 1 > 0, impliesπi − πj − γij = 1.

We first show the following tow facts. For any arc(i, j) ∈ A′(fk+1):

(C1) πi − πj − γij ≤ 1, if (i, j) ∈ A′(fk).

(C2) πi − πj ≤ −1 < 1, if (i, j) /∈ A′(fk).

Indeed if(i, j) ∈ A′(fk), then (C1) follows directly from the constraints of the dual problem

(D). If (i, j) ∈ A′(fk+1)\A′(fk), then(j, i) ∈ A′(fk), and(j, i) is on a shortest 2-route inG′(fk)

according to the flow-updating formulas (23)-(24). Thus by the complementary slackness condi-

tion (S2), πj −πi − γji = 1. Combining the fact thatγji ≥ 0, we obtainπi −πj = −1− γij ≤ −1.

This implies (C2).

Now let ȳ be an optimal solution inG′(fk+1), which corresponds to a 2-route containing two

s-t pathsP1 andP2, and lety1
k+1, y2

k+1 be the number of arcs onP1 andP2, respectively. Then

αk+1 =
∑

(i,j)∈A′(fk+1)

ȳij = y1
k+1 + y2

k+1. (43)

Let P1 = (s = i0, i1), (i1, i2), . . . , (iℓ1−1, t = iℓ1). Then

y1
k+1 ≥

∑

(iq ,iq+1)∈P1∩A′(fk)

[πiq − πiq+1
− γiqiq+1

]

+
∑

(iq ,iq+1)∈P1−A′(fk)

[πiq − πiq+1
]

= πs − πt −
∑

(iq ,iq+1)∈P1∩A′(fk)

γiqiq+1
.

25

The first inequality comes from (C1) and (C2). Similarly, letP2 = (s = j0, j1), (j1, j2), . . . , (jℓ2−1,

t = jℓ2). Then we havey2
k+1 ≥ πs − πt −

∑

(jq ,jq+1)∈P2∩A′(fk) γiqiq+1
. So (i) follows by summing

upy1
k+1 andy2

k+1, and combining (43).

For (ii), first note that we can have equalityαk+1 = αk only if each arc in pathsP1 andP2 is

also an arc ofA′(fk) due to (C2). So if αk+1 = αk thenβk+1 ≤ βk. Consider the 2-path{P1, P2}

(after merging the parallel arcs generated from the bridges). By the flow updating formulas (23)-

(24), at least one arc(i, j) in this 2-path either increases its flow to full capacity (i.e., fk+1
ij = uij),

or decreases to zero (i.e.,fk+1
ij = 0), or becomes a tight arc (i.e.,fk+1

ij = F k+1/2 < uij). In

the first two cases,(i, j) no longer belongs toA(fk+1), and hence no longer belongs toA′(fk+1).

So βk+1 < βk. We show that the third case cannot happen. Suppose otherwise, we must have

(i, j) ∈ AB(fk), the set of bridges at thekth iteration. So there is a bridge inA(fk+1) that is tight,

and hence the algorithm reaches the optimality. This meansαk+1 = +∞ > αk, a contradiction

with the assumption ofαk+1 = αk. 2

26

