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What is centrality? I

Centrality measures address the question:
"Who is the most important or central person in this
network?"
There are many answers to this question, depending on what we
mean by importance.
According to Scott Adams, the power a person holds in the
organization is inversely proportional to the number of keys on
his keyring.

A janitor has keys to every office, and no power.
The CEO does not need a key: people always open the door for
him.

There are a vast number of different centrality measures that
have been proposed over the years.
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What is centrality? II

According to Freeman in 1979, and evidently still true today:
"There is certainly no unanimity on exactly what centrality is or
on its conceptual foundations, and there is little agreement on
the proper procedure for its measurement."
We will look at some popular ones...
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Centrality measures

Degree centrality
Closeness centrality
Betweeness centrality
Eigenvector centrality
PageRank centrality
. . .
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Degree centrality for undirected graph I

The nodes with higher degree is more central.
Let A ∈ Rn×n be the adjacency matrix of a undirected graph.
Let k ∈ Rn be the degree vector. Let e ∈ Rn be the all-one
vector. Then

k = Ae

For comparison purpose, we can standardize the degree by
dividing by the maximum possible value n− 1.
Degree is simply the number of nodes at distance one.

Though simple, degree is often a highly effective measure of the
influence or importance of a node:

In many social settings people with more connections tend to
have more power and more visible.
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Degree centrality for undirected graph II

Group-level centralization: degree, as an individual-level
centrality measure, has a distribution which can be summarized
by its mean and variance as is commonly practiced in data
analysis.
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An example: The Padgett Florentine families:
Business network

rm(list = ls()) # clear memory
library(igraph) # load packages
load("./R code/padgett.RData") # load data
plot(padgett$PADGB) # plot the business graph
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An example: the Padgett Florentine
families:Marriage network

plot(padgett$PADGM) # plot the marriage graph
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An example: Degree centrality for the Padgett
Florentine families: business netowrk

# calculate the degree centrality for business network
deg_B <- degree(padgett$PADGB, loops = FALSE)
sort(deg_B, decreasing = TRUE)

## MEDICI GUADAGNI STROZZI ALBIZZI BISCHERI CASTELLAN PERUZZI
## 6 4 4 3 3 3 3
## RIDOLFI TORNABUON BARBADORI SALVIATI ACCIAIUOL GINORI LAMBERTES
## 3 3 2 2 1 1 1
## PAZZI PUCCI
## 1 0

# calculate the standardized degree centrality
deg_B_S <- degree(padgett$PADGB, loops = FALSE)/(vcount(padgett$PADGM) - 1)
sort(deg_B_S, decreasing = TRUE)

## MEDICI GUADAGNI STROZZI ALBIZZI BISCHERI CASTELLAN PERUZZI
## 0.40000 0.26667 0.26667 0.20000 0.20000 0.20000 0.20000
## RIDOLFI TORNABUON BARBADORI SALVIATI ACCIAIUOL GINORI LAMBERTES
## 0.20000 0.20000 0.13333 0.13333 0.06667 0.06667 0.06667
## PAZZI PUCCI
## 0.06667 0.00000
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An example: Degree centrality for the Padgett
Florentine families: marriage network

# calculate the degree centrality for business network
deg_M <- degree(padgett$PADGM, loops = FALSE)
sort(deg_M, decreasing = TRUE)

## MEDICI BARBADORI LAMBERTES PERUZZI BISCHERI CASTELLAN GINORI
## 5 4 4 4 3 3 2
## GUADAGNI PAZZI SALVIATI TORNABUON ACCIAIUOL ALBIZZI PUCCI
## 2 1 1 1 0 0 0
## RIDOLFI STROZZI
## 0 0

# calculate the standardized degree centrality
deg_M_S <- degree(padgett$PADGM, loops = FALSE)/(vcount(padgett$PADGB) - 1)
sort(deg_M_S, decreasing = TRUE)

## MEDICI BARBADORI LAMBERTES PERUZZI BISCHERI CASTELLAN GINORI
## 0.33333 0.26667 0.26667 0.26667 0.20000 0.20000 0.13333
## GUADAGNI PAZZI SALVIATI TORNABUON ACCIAIUOL ALBIZZI PUCCI
## 0.13333 0.06667 0.06667 0.06667 0.00000 0.00000 0.00000
## RIDOLFI STROZZI
## 0.00000 0.00000
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Outdegree centrality and indegree prestige for
digraph I

The nodes with higher outdegree is more central (choices made).
The nodes with higher indegree is more prestigious (choices
received).
Let A ∈ Rn×n be the adjacency matrix of a directed graph. Let
kin, kout ∈ Rn be the indegree and outdegree vectors
respectively. Let e ∈ Rn be the all-one vector. Then

kout = ATe (column sum of A);
kin = Ae (row sum of A).

Note: The adjacency matrix in directed graph has the
counter-intuitive convention where Aij = 1 iff there is a link
from j to i.
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An example
rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(0, 1, 0, 1,
0, 0, 0, 1,
1, 1, 0, 0,
0, 0, 1, 0), # the data elements

nrow=4, # number of rows
ncol=4, # number of columns
byrow = TRUE)# fill matrix by rows

g <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
degree(g, mode='in')

## [1] 2 1 2 1

degree(g, mode='out')

## [1] 1 2 1 2

plot(g) # plot the graph
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Closeness centrality for undirected graph
The farness/peripherality of a node v is defined as the sum of its
distances to all other nodes
The closeness is defined as the inverse of the farness.

closeness(v) =
1

∑i 6=v dvi

For comparison purpose, we can standardize the closeness by dividing by
the maximum possible value 1/(n− 1)
If there is no (directed) path between vertex v and i then the total
number of vertices is used in the formula instead of the path length.

The more central a node is, the lower its total distance to all other
nodes.
Closeness can be regarded as a measure of how long it will take to
spread information from v to all other nodes sequentially.
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Example: Closeness centrality for the Padgett
Florentine families
rm(list = ls()) # clear memory
library(igraph) # load packages
load("./R code/padgett.RData") # load data
# calculate the closeness centrality
sort(closeness(padgett$PADGB), decreasing = TRUE)

## MEDICI RIDOLFI ALBIZZI TORNABUON GUADAGNI BARBADORI STROZZI
## 0.024390 0.022727 0.022222 0.022222 0.021739 0.020833 0.020833
## BISCHERI CASTELLAN SALVIATI ACCIAIUOL PERUZZI GINORI LAMBERTES
## 0.019608 0.019231 0.019231 0.018519 0.018519 0.017241 0.016949
## PAZZI PUCCI
## 0.015385 0.004167

# calculate the standardized closeness centrality
close_B_S <- closeness(padgett$PADGB) * (vcount(padgett$PADGB) - 1)
sort(close_B_S, decreasing = TRUE)

## MEDICI RIDOLFI ALBIZZI TORNABUON GUADAGNI BARBADORI STROZZI
## 0.3659 0.3409 0.3333 0.3333 0.3261 0.3125 0.3125
## BISCHERI CASTELLAN SALVIATI ACCIAIUOL PERUZZI GINORI LAMBERTES
## 0.2941 0.2885 0.2885 0.2778 0.2778 0.2586 0.2542
## PAZZI PUCCI
## 0.2308 0.0625
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Betweenness centrality

Betweenness centrality quantifies the number of times a node
acts as a bridge along the shortest path between two other
nodes.
It was introduced as a measure for quantifying the control of a
human on the communication between other humans in a social
network by Linton Freeman.
In this conception, vertices that have a high probability to occur
on a randomly chosen shortest path between two randomly
chosen vertices have a high betweenness.
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Betweenness centrality I

The betweenness of a vertex v in a graph G := (V, E) with V
vertices is computed as follows:

For each pair of vertices (s, t), compute the shortest paths
between them.
For each pair of vertices (s, t), determine the fraction of shortest
paths that pass through the vertex in question (here, vertex v).
Sum this fraction over all pairs of vertices (s, t).

More compactly the betweenness can be represented as:

Betwenness(v) = ∑
s 6=v 6=t∈V

σst(v)
σst

where σst is total number of shortest paths from node s to node
t and σst(v) is the number of those paths that pass through v.
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Betweenness centrality II

The betweenness may be normalized by dividing through the
number of pairs of vertices not including v, which for directed
graphs is (n− 1)(n− 2) and for undirected graphs is
(n− 1)(n− 2)/2.
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An example I

1

2

3
4

5

6 The node betweenness for the
graph on the left:

Node Betwenness
1 0
2 1.5
3 1
4 4
5 3
6 0
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How to find the betweeness in the example?
For example: for node 2, the (n− 1)(n− 2)/2 = 5(5− 1)/2 = 10
terms in the summation in the order of 13, 14, 15, 16, 34, 35, 36, 45,
46, 56 are

1
1
+

0
1
+

0
1
+

0
1
+

0
1
+

1
2
+

0
1
+

0
1
+

0
1
+

0
1
= 1.5.

Here the denominators are the number of shortest paths between pair of
edges in the above order and the numerators are the number of shortest
paths passing through edge 2 between pair of edges in the above order.
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Betweenness centrality for the Padgett Florentine
families

rm(list = ls()) # clear memory
library(igraph) # load packages
load("./R code/padgett.RData") # load data
# calculate the betweenness centrality
sort(betweenness(padgett$PADGB), decreasing = TRUE)

## MEDICI GUADAGNI ALBIZZI SALVIATI RIDOLFI BISCHERI STROZZI
## 47.500 23.167 19.333 13.000 10.333 9.500 9.333
## BARBADORI TORNABUON CASTELLAN PERUZZI ACCIAIUOL GINORI LAMBERTES
## 8.500 8.333 5.000 2.000 0.000 0.000 0.000
## PAZZI PUCCI
## 0.000 0.000

# calculate the standardized Betweenness centrality
betw_B_S <- 2*betweenness(padgett$PADGB)/((vcount(padgett$PADGB) - 1)*(vcount(padgett$PADGB)-2))
sort(betw_B_S, decreasing = TRUE)

## MEDICI GUADAGNI ALBIZZI SALVIATI RIDOLFI BISCHERI STROZZI
## 0.45238 0.22063 0.18413 0.12381 0.09841 0.09048 0.08889
## BARBADORI TORNABUON CASTELLAN PERUZZI ACCIAIUOL GINORI LAMBERTES
## 0.08095 0.07937 0.04762 0.01905 0.00000 0.00000 0.00000
## PAZZI PUCCI
## 0.00000 0.00000
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Eigenvector centrality for undirected graph I

Let x be eigenvector of the largest eigenvalue λ of the
non-negative adjacency matrix A of the undirected graph
G = (V, E).
The eigenvector centrality of node i is equal to the leading
eigenvector xi of (column) stochastic matrix N := AD−1

(whose leading eigenvalue is 1):

Nx = x

Consider a particular node i with its neighboring nodes N(i):

xi = ∑
j∈N(i)

xj = ∑
j

Aijxj
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Eigenvector centrality for undirected graph II

The eigenvector centrality defined in this way depends both on
the number of neighbors |N(i)| and the quality of its
connections xj, j ∈ N(i).
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Why the leading eigenvector?

Suppose we want to choose an eigenvector x to define a
centrality measure, then a necessary condition is x ∈ R+

n .
For non-negative matrix, the leading eigenvector is non-negative
(see Appendix A (Slide 68) for background information on non-negative,
irreducible and primitive matrices).
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A toy example
rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(0, 1, 0, 1,
1, 0, 1, 1,
0, 1, 0, 1,
1, 1, 1, 0), # the data elements

nrow=4, # number of rows
ncol=4, # number of columns
byrow = TRUE)# fill matrix by rows

g <- graph.adjacency(adj, mode="undirected") # create igrpah object from adjacency matrix
plot(g) # plot the graph
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4
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A toy example
D <- diag(1/degree(g), 4) #degree diagonal matrix
D

## [,1] [,2] [,3] [,4]
## [1,] 0.5 0.0000 0.0 0.0000
## [2,] 0.0 0.3333 0.0 0.0000
## [3,] 0.0 0.0000 0.5 0.0000
## [4,] 0.0 0.0000 0.0 0.3333

N <- adj %*% D # PageRank matrix
N

## [,1] [,2] [,3] [,4]
## [1,] 0.0 0.3333 0.0 0.3333
## [2,] 0.5 0.0000 0.5 0.3333
## [3,] 0.0 0.3333 0.0 0.3333
## [4,] 0.5 0.3333 0.5 0.0000

y <- eigen(N) # find the eigenvalues and eigenvectors
y$val # the eigenvalues

## [1] 1.000e+00 -6.667e-01 -3.333e-01 3.088e-17

y$vec # the eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] -0.3922 -0.5 -1.233e-32 -7.071e-01
## [2,] -0.5883 0.5 -7.071e-01 1.091e-16
## [3,] -0.3922 -0.5 0.000e+00 7.071e-01
## [4,] -0.5883 0.5 7.071e-01 7.544e-17
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Eigenvector centrality for the Padgett Florentine
families

rm(list = ls()) # clear memory
library(igraph) # load packages
load("./R code/padgett.RData") # load data
# calculate the degree centrality
sort(evcent(padgett$PADGB)[[1]], decreasing = TRUE)

## MEDICI STROZZI RIDOLFI TORNABUON GUADAGNI BISCHERI PERUZZI
## 1.000e+00 8.273e-01 7.937e-01 7.572e-01 6.719e-01 6.572e-01 6.408e-01
## CASTELLAN ALBIZZI BARBADORI SALVIATI ACCIAIUOL LAMBERTES GINORI
## 6.020e-01 5.669e-01 4.920e-01 3.391e-01 3.071e-01 2.063e-01 1.741e-01
## PAZZI PUCCI
## 1.041e-01 6.191e-17

sort(evcent(padgett$PADGM)[[1]], decreasing = TRUE)

## PERUZZI LAMBERTES CASTELLAN BARBADORI BISCHERI MEDICI GUADAGNI
## 1.000e+00 9.236e-01 8.305e-01 8.290e-01 7.311e-01 5.121e-01 4.993e-01
## GINORI TORNABUON PAZZI SALVIATI ACCIAIUOL ALBIZZI PUCCI
## 4.046e-01 1.545e-01 1.545e-01 1.545e-01 2.354e-17 2.354e-17 2.354e-17
## RIDOLFI STROZZI
## 2.354e-17 2.354e-17
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PageRank centrality I

Google’s PageRank is a variant of the Eigenvector centrality
measure for directed network.
Basic PageRank.

Whenever a node i has no outgoing link, we addd a self loop to
i such that kin

i = kout
i = 1. Therefore Aii = 1 for such nodes in

the adjacency matrix.
Let D be the diagonal matrix of outdegrees where each element
Dii = ki
Define a column stochastic matrix

N = AD−1

The PageRank centrality of node i is equal to the leading
eigenvector xi of matrix N (The leading eigenvalue is 1):

x = Nx
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PageRank centrality II

Note: The adjacency matrix in directed graph has the
counter-intuitive convention where Aij = 1 iff there is a link
from j to i.
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A toy example for the basic PageRank
rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(0, 1, 0, 1,
0, 0, 0, 1,
1, 1, 0, 0,
0, 0, 1, 0), # the data elements

nrow=4, # number of rows
ncol=4, # number of columns
byrow = TRUE)# fill matrix by rows

g <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g) # plot the graph

1

2

3

4
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A toy example for the basic PageRank
D <- diag(1/pmax(degree(g, mode = "out"), 1), 4) #degree diagonal matrix
D

## [,1] [,2] [,3] [,4]
## [1,] 1 0.0 0 0.0
## [2,] 0 0.5 0 0.0
## [3,] 0 0.0 1 0.0
## [4,] 0 0.0 0 0.5

N <- adj %*% D # PageRank matrix
N

## [,1] [,2] [,3] [,4]
## [1,] 0 0.5 0 0.5
## [2,] 0 0.0 0 0.5
## [3,] 1 0.5 0 0.0
## [4,] 0 0.0 1 0.0

y <- eigen(N) # find the eigenvalues and eigenvectors
y$val # the eigenvalues

## [1] 1.0000+0.0000i -0.3403+0.8166i -0.3403-0.8166i -0.3194+0.0000i

y$vec # the eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] 0.4472+0i -0.2864-0.1910i -0.2864+0.1910i 0.4249+0i
## [2,] 0.2981+0i -0.1408-0.3378i -0.1408+0.3378i -0.7518+0i
## [3,] 0.5963+0i -0.2204+0.5288i -0.2204-0.5288i -0.1534+0i
## [4,] 0.5963+0i 0.6476+0.0000i 0.6476+0.0000i 0.4803+0i
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Scaling PageRank centrality

The scaling PageRank
Construct the positive linear combination

M = αN +
1− α

n
eeT

The Scaling PageRank centrality of node i is equal to the
leading eigenvector xi of matrix M:

x = Mx

Note: The adjacency matrix in directed graph has the
counter-intuitive convention where Aij = 1 iff there is a link
from j to i.
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A toy example for the scaling PageRank with
damping factor α = 0.85

rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(0, 1, 0, 1,
0, 0, 0, 1,
1, 1, 0, 0,
0, 0, 1, 0), # the data elements

nrow=4, # number of rows
ncol=4, # number of columns
byrow = TRUE)# fill matrix by rows

g <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g) # plot the graph
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A toy example for the scaling PageRank with
damping factor α = 0.85

D <- diag(1/pmax(degree(g, mode = "out"), 1), 4) #degree diagonal matrix
D

## [,1] [,2] [,3] [,4]
## [1,] 1 0.0 0 0.0
## [2,] 0 0.5 0 0.0
## [3,] 0 0.0 1 0.0
## [4,] 0 0.0 0 0.5

N <- adj %*% D # PageRank matrix
N

## [,1] [,2] [,3] [,4]
## [1,] 0 0.5 0 0.5
## [2,] 0 0.0 0 0.5
## [3,] 1 0.5 0 0.0
## [4,] 0 0.0 1 0.0

Eye <- matrix(rep(1, 16), nrow = 4, ncol = 4, byrow = TRUE) # create a 4x4 all-one matrix
alpha <- 0.85 # damping factor
M <- alpha * N + (1 - alpha) * Eye/4
y <- eigen(M) # find the eigenvalues and eigenvectors
y$val # the eigenvalues

## [1] 1.0000+0.0000i -0.2892+0.6941i -0.2892-0.6941i -0.2715+0.0000i

y$vec # the eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] 0.4552+0i -0.2864-0.1910i -0.2864+0.1910i 0.4249+0i
## [2,] 0.3194+0i -0.1408-0.3378i -0.1408+0.3378i -0.7518+0i
## [3,] 0.5958+0i -0.2204+0.5288i -0.2204-0.5288i -0.1534+0i
## [4,] 0.5795+0i 0.6476+0.0000i 0.6476+0.0000i 0.4803+0i
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Why scaling? if you run the basic PageRank for
this modified example...

rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(0, 1, 0, 1,
0, 0, 0, 1,
1, 1, 1, 1,
0, 0, 0, 0), # the data elements

nrow=4, # number of rows
ncol=4, # number of columns
byrow = TRUE)# fill matrix by rows

g <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g) # plot the graph
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Why scaling? if you run the basic PageRank for
this modified example...

D <- diag(1/pmax(degree(g, mode = "out"), 1), 4) #degree diagonal matrix
D

## [,1] [,2] [,3] [,4]
## [1,] 1 0.0 0 0.0000
## [2,] 0 0.5 0 0.0000
## [3,] 0 0.0 1 0.0000
## [4,] 0 0.0 0 0.3333

N <- adj %*% D # PageRank matrix
N

## [,1] [,2] [,3] [,4]
## [1,] 0 0.5 0 0.3333
## [2,] 0 0.0 0 0.3333
## [3,] 1 0.5 1 0.3333
## [4,] 0 0.0 0 0.0000

y <- eigen(N) # find the eigenvalues and eigenvectors
y$val # the eigenvalues

## [1] 1 0 0 0

y$vec # the eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] 0 0.7071 -7.071e-01 0.7071
## [2,] 0 0.0000 5.669e-292 0.0000
## [3,] 1 -0.7071 7.071e-01 -0.7071
## [4,] 0 0.0000 0.000e+00 0.0000
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Leaking problem due to reducibility I

Note that the previosu example shows that Node 3 gets all
weights!
The problem comes from the structure of the graph: it is not
strongly connected, implying that N is reducible.
The Perron-Frobenius theorem offers a way to gurantee a
positive leading eignevector (see Appendix A (Slide 68) ).
Therefore we should try to revise N to generate a new matrix
which is regular (or more stongly positive).

The scaling PageRank matirx M > 0.
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Now, run the scaling PageRank for this modified
example...

Eye <- matrix(rep(1, 16), nrow = 4, ncol = 4, byrow = TRUE) # create a 4x4 all-one matrix
alpha <- 0.85 # damping factor
M <- alpha * N + (1 - alpha) * Eye/4
M

## [,1] [,2] [,3] [,4]
## [1,] 0.0375 0.4625 0.0375 0.3208
## [2,] 0.0375 0.0375 0.0375 0.3208
## [3,] 0.8875 0.4625 0.8875 0.3208
## [4,] 0.0375 0.0375 0.0375 0.0375

y <- eigen(M) # find the eigenvalues and eigenvectors
y$val # the eigenvalues

## [1] 1.000e+00+0.000e+00i 5.039e-07+8.728e-07i 5.039e-07-8.728e-07i
## [4] -1.008e-06+0.000e+00i

y$vec # the eigenvectors

## [,1] [,2] [,3] [,4]
## [1,] 0.08061+0i -7.071e-01+0.000e+00i -7.071e-01-0.000e+00i 7.071e-01+0i
## [2,] 0.05657+0i -8.384e-07-1.452e-06i -8.384e-07+1.452e-06i -1.677e-06+0i
## [3,] 0.99416+0i 7.071e-01+0.000e+00i 7.071e-01+0.000e+00i -7.071e-01+0i
## [4,] 0.04408+0i 2.982e-12-5.165e-12i 2.982e-12+5.165e-12i 5.965e-12+0i
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Comparison among centrality measures for the
Padgett Florentine families

Let us look at the business ties network of the Padgett Florentine families
The top three ranks by different methods are summarized as follows:

Rank Degree Closeness Betweenness Eigenvector PageRank
1 MEDICI MEDICI MEDICI MEDICI MEDICI
2 GUADAGNI RIDOLFI GUADAGNI STROZZI GUADAGNI
3 STROZZI ALBIZZI ALBIZZI RIDOLFI STROZZI

Deciding which are most appropriate for a given application clearly requires
consideration of the context.
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Correlation analysis among centrality measures for
the Padgett Florentine families

rm(list = ls()) # clear memory
library(igraph) # load packages
load("./R code/padgett.RData") # read in the Padgett Florentine families network
# calculate the degree centrality
deg_B <- degree(padgett$PADGB, loops = FALSE)
sort(deg_B, decreasing = TRUE) # sort the nodes in decreasing order

## MEDICI GUADAGNI STROZZI ALBIZZI BISCHERI CASTELLAN PERUZZI
## 6 4 4 3 3 3 3
## RIDOLFI TORNABUON BARBADORI SALVIATI ACCIAIUOL GINORI LAMBERTES
## 3 3 2 2 1 1 1
## PAZZI PUCCI
## 1 0

# calculate the standardized degree centrality
deg_B_S <- degree(padgett$PADGB, loops = FALSE)/(vcount(padgett$PADGM) - 1)
sort(deg_B_S, decreasing = TRUE) # sort the nodes in decreasing order

## MEDICI GUADAGNI STROZZI ALBIZZI BISCHERI CASTELLAN PERUZZI
## 0.40000 0.26667 0.26667 0.20000 0.20000 0.20000 0.20000
## RIDOLFI TORNABUON BARBADORI SALVIATI ACCIAIUOL GINORI LAMBERTES
## 0.20000 0.20000 0.13333 0.13333 0.06667 0.06667 0.06667
## PAZZI PUCCI
## 0.06667 0.00000
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Correlation analysis among centrality measures for
the Padgett Florentine families

# calculate the closeness centrality
close_B <- closeness(padgett$PADGB)
sort(close_B, decreasing = TRUE)

## MEDICI RIDOLFI ALBIZZI TORNABUON GUADAGNI BARBADORI STROZZI
## 0.024390 0.022727 0.022222 0.022222 0.021739 0.020833 0.020833
## BISCHERI CASTELLAN SALVIATI ACCIAIUOL PERUZZI GINORI LAMBERTES
## 0.019608 0.019231 0.019231 0.018519 0.018519 0.017241 0.016949
## PAZZI PUCCI
## 0.015385 0.004167

# calculate the standardized closeness centrality
close_B_S <- closeness(padgett$PADGB) * (vcount(padgett$PADGB) - 1)
sort(close_B_S, decreasing = TRUE)

## MEDICI RIDOLFI ALBIZZI TORNABUON GUADAGNI BARBADORI STROZZI
## 0.3659 0.3409 0.3333 0.3333 0.3261 0.3125 0.3125
## BISCHERI CASTELLAN SALVIATI ACCIAIUOL PERUZZI GINORI LAMBERTES
## 0.2941 0.2885 0.2885 0.2778 0.2778 0.2586 0.2542
## PAZZI PUCCI
## 0.2308 0.0625

Donglei Du (UNB) Social Network Analysis 43 / 85



Correlation analysis among centrality measures for
the Padgett Florentine families

# calculate the Betweenness centrality
betw_B <- betweenness(padgett$PADGB)
sort(betw_B, decreasing = TRUE)

## MEDICI GUADAGNI ALBIZZI SALVIATI RIDOLFI BISCHERI STROZZI
## 47.500 23.167 19.333 13.000 10.333 9.500 9.333
## BARBADORI TORNABUON CASTELLAN PERUZZI ACCIAIUOL GINORI LAMBERTES
## 8.500 8.333 5.000 2.000 0.000 0.000 0.000
## PAZZI PUCCI
## 0.000 0.000

# calculate the standardized Betweenness centrality
betw_B_S <- 2 * betweenness(padgett$PADGB)/((vcount(padgett$PADGB) - 1) * (vcount(padgett$PADGB)-2))
sort(betw_B_S, decreasing = TRUE)

## MEDICI GUADAGNI ALBIZZI SALVIATI RIDOLFI BISCHERI STROZZI
## 0.45238 0.22063 0.18413 0.12381 0.09841 0.09048 0.08889
## BARBADORI TORNABUON CASTELLAN PERUZZI ACCIAIUOL GINORI LAMBERTES
## 0.08095 0.07937 0.04762 0.01905 0.00000 0.00000 0.00000
## PAZZI PUCCI
## 0.00000 0.00000
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Correlation analysis among centrality measures for
the Padgett Florentine families

# calculate the Eigenvector centrality
eigen_B <- evcent(padgett$PADGB)
sort(eigen_B[[1]], decreasing = TRUE)

## MEDICI STROZZI RIDOLFI TORNABUON GUADAGNI BISCHERI PERUZZI
## 1.0000 0.8273 0.7937 0.7572 0.6719 0.6572 0.6408
## CASTELLAN ALBIZZI BARBADORI SALVIATI ACCIAIUOL LAMBERTES GINORI
## 0.6020 0.5669 0.4920 0.3391 0.3071 0.2063 0.1741
## PAZZI PUCCI
## 0.1041 0.0000

Donglei Du (UNB) Social Network Analysis 45 / 85



Correlation analysis among centrality measures for
the Padgett Florentine families

# calculate the PageRank centrality
page_B <- page.rank(padgett$PADGB)
sort(page_B[[1]], decreasing = TRUE)

## MEDICI GUADAGNI STROZZI ALBIZZI TORNABUON RIDOLFI CASTELLAN
## 0.144373 0.097424 0.087226 0.078339 0.070574 0.068885 0.068644
## BISCHERI PERUZZI SALVIATI BARBADORI PAZZI GINORI LAMBERTES
## 0.068180 0.067203 0.060696 0.049803 0.035697 0.032097 0.030604
## ACCIAIUOL PUCCI
## 0.030354 0.009901
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Correlation analysis among centrality measures for
the Padgett Florentine families

df <- data.frame(deg_B_S, close_B_S, betw_B_S, eigen_B[[1]], page_B[[1]])
Pearson_correlation_matrix <- cor(df) # Pearson correlation matrix
Spearman_correlation_matrix <- cor(df, method = "spearman") # Spearman correlation matrix
cor(df, method = "kendall") # Kendall correlation matrix

## deg_B_S close_B_S betw_B_S eigen_B..1.. page_B..1..
## deg_B_S 1.0000 0.6976 0.6680 0.8620 0.8991
## close_B_S 0.6976 1.0000 0.6905 0.7459 0.6611
## betw_B_S 0.6680 0.6905 1.0000 0.5570 0.6963
## eigen_B..1.. 0.8620 0.7459 0.5570 1.0000 0.7000
## page_B..1.. 0.8991 0.6611 0.6963 0.7000 1.0000

# Basic Scatterplot Matrix
pairs(~deg_B+close_B+betw_B+eigen_B[[1]]+page_B[[1]],data=df, main="Simple Scatterplot Matrix")
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Correlation analysis among centrality measures for
the Padgett Florentine families

# Scatterplot Matrices from the car Package, include lowess and linear best
# fit #lines, and boxplot, densities, or histograms in the principal
# diagonal, as well as #rug plots in the margins of the cells.
library(car)
## Warning: package 'car' was built under R version 3.0.2
scatterplotMatrix(~deg_B + close_B + betw_B + eigen_B[[1]] + page_B[[1]], data = df, main = "correlation matrix")
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Correlation analysis among centrality measures for
the Padgett Florentine families

# Classifcication based on correaltion coefficient Ward Hierarchical
# Clustering
fit_pearson <- hclust(as.dist(Pearson_correlation_matrix - diag(5)), method = "ward")

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

plot(fit_pearson) # display dendogram

pa
ge

_B
..1

..

de
g_

B
_S

ei
ge

n_
B

..1
..

cl
os

e_
B

_S

be
tw

_B
_S0.

5
0.

6
0.

7
0.

8
0.

9

Cluster Dendrogram

hclust (*, "ward.D")
as.dist(Pearson_correlation_matrix − diag(5))

H
ei

gh
t

Donglei Du (UNB) Social Network Analysis 49 / 85



Classification of centrality measures base don the
correlation analysis of the Padgett Florentine
families

groups <- cutree(fit_pearson, k = 3) # cut tree into 5 clusters
fit_spearman <- hclust(as.dist(Spearman_correlation_matrix - diag(5)), method = "ward")

## The "ward" method has been renamed to "ward.D"; note new "ward.D2"

plot(fit_spearman) # display dendogram
y<-eigrn(adj)

## Error: could not find function "eigrn"
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Comparing the three most popular centrality
measures

Generally, the 3 centrality types will be positively correlated
When they are not (low) correlated, it probably tells you something interesting
about the network

Low degree Low closeness Low betweenness
High degree Embedded in

cluster that is far
from the rest of
the network

Ego’s con-
nections are
redundant -
communication
bypasses him/her

High closeness Key player tied to
important/active
alters

Probably multiple
paths in the net-
work, ego is near
many people, but
so are many oth-
ers

High betweenness Ego’s few ties are
crucial for net-
work flow

Ego monopolizes
the ties from a
small number of
people to many
others
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A word for future by Wasserman and Faust (Social
Network Analysis, Cambridge University Press,
1994: pp730) I

"..., we do not expect that the most fruitful development in
descriptive techniques will be the continued addition of yet
another definition of centrality measure or yet another subgroup
definition or yet another definition of equivalence. Rather, we
expect that careful assessment of the usefulness of current
methods in substantive and theoretical applications will be
helpful in determining when, and under what conditions, each
method is useful (perhaps in conjunction with statistical
assumptions). Considerable work also needs to be done on
measurement properties (such as sampling variability) of the
current measures."
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Extensions

Weighted network
Bipartitite and hypergraph
Dynamic network
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Extensions to weighted network

Reduce to unweighted network so the standard techniques for
unweighted graphs can be applied (Newman, 2004)

Assume positive weights, we can map from a weighted network
to an unweighted multigraph
Formally, every edge of positive integer weight w ∈N+ is
replaced with w parallel edges of weight 1 each, connecting the
same vertices.
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Extensions to bipartitie network: affiliation network

Reduce to unweighted network so the standard techniques for
unweighted graphs can be applied
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Extensions to dynamic

Some work but largely open
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Hypergraph

An (undirected) hypergraph (V; E) is a set system with ground
set V as hypervertrices and E = {E1, . . . , Em} (Ej ⊆ 2V) as
hyperedges.
Equivalently, hypergraph can be represented by the incidence
matrix Hn×m such that

Hij =

{
1, if vi ∈ Ej;
0, otherwise,

Equivalently, hypergraph can be understood as a bipartitie graph
(V, E) as the partition of nodes.
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Hypergraph degree

Let 1m and 1n be the all one vectors.
Node degree:

Dv = H1m

Edge degree:
De = Ht1n

If edge degree are all equal to 2, then we obtain the normal
graph.
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Eigenvector centrality for hypergraph
There are many possibile definitions, the simplest one is to
project the hypergraph to two normal graphs:
For the incidence matrix Hn×m of hypergraph (V, E), then

Av := HHt

Ae := HtH

are the adjacency matrices of two normal graphs on node sets V
and E respectively.
Define two (column) stochastic matrices:

Nv := AvD−1
v

Ne := HtHD−1
e

Define the node and edge centrality measures respectively.
Nvx = x
Ney = y
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An example
rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from edge list
from<- c(1,1,1,2,2, 3,3,3,3,4,5,5)
to<- c("a","b","c", "a", "e", "b","c","d","e","a","b","c")
edgelist_df <-data.frame(from, to)
g<- graph.data.frame(edgelist_df,directed=FALSE)
V(g)$type <- V(g)$name %in% edgelist_df[,1]#add the type vertex attribute to create a biaprtite graph
lay <- layout.bipartite(g)
plot(g, layout=lay[,2:1],vertex.color=c("green","cyan")[V(g)$type+1])# plot the graph

proj<-bipartite.projection(g) # find the two projected normal graphs
g1<-proj$proj1
g2<-proj$proj2
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continue
Nv <- t(get.stochastic(g1,sparse=FALSE)) #column stochastic matrix
Nv

## a b c e d
## a 0.0000 0.25 0.25 0.25 0.0000
## b 0.3333 0.00 0.25 0.25 0.3333
## c 0.3333 0.25 0.00 0.25 0.3333
## e 0.3333 0.25 0.25 0.00 0.3333
## d 0.0000 0.25 0.25 0.25 0.0000

yv <- eigen(Nv) # find the eigenvalues and eigenvectors
yv$val # the eigenvalues

## [1] 1.000e+00 -5.000e-01 -2.500e-01 -2.500e-01 4.411e-17

yv$vec # the eigenvectors

## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.3693 0.5477 2.719e-17 6.701e-17 -7.071e-01
## [2,] -0.4924 -0.3651 -9.065e-18 -8.165e-01 3.107e-17
## [3,] -0.4924 -0.3651 7.071e-01 4.082e-01 3.107e-17
## [4,] -0.4924 -0.3651 -7.071e-01 4.082e-01 3.107e-17
## [5,] -0.3693 0.5477 2.719e-17 6.701e-17 7.071e-01
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continue
Ne <- t(get.stochastic(g2,sparse=FALSE)) #column stochastic matrix
Ne

## 1 2 3 4 5
## 1 0.00 0.3333 0.3333 0.5 0.5
## 2 0.25 0.0000 0.3333 0.5 0.0
## 3 0.25 0.3333 0.0000 0.0 0.5
## 4 0.25 0.3333 0.0000 0.0 0.0
## 5 0.25 0.0000 0.3333 0.0 0.0

ye <- eigen(Ne) # find the eigenvalues and eigenvectors
ye$val # the eigenvalues

## [1] 1.0000 -0.6076 -0.5000 0.2743 -0.1667

ye$vec # the eigenvectors

## [,1] [,2] [,3] [,4] [,5]
## [1,] -0.6172 2.941e-16 -8.165e-01 -1.027e-16 0.5345
## [2,] -0.4629 6.199e-01 2.283e-16 4.493e-01 -0.5345
## [3,] -0.4629 -6.199e-01 1.746e-16 -4.493e-01 -0.5345
## [4,] -0.3086 -3.401e-01 4.082e-01 5.460e-01 0.2673
## [5,] -0.3086 3.401e-01 4.082e-01 -5.460e-01 0.2673
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Eigenvector centrality for hypergraph

Here is another way to project by taking into consideration of
the edge degree.

P = HD−1
e HtD−1

v

Then P is a (column) stochastic matrix, and we define the node
eigenvector measure as the leading eigenvector (which is 1):

Px = x

Assume regularity and aperiodicity (Perron-Frobenius theorem),
there is a unique x.
Otherwise, we can add a damping factor, liek the PageRank, to
gurantee uniqueness.

Donglei Du (UNB) Social Network Analysis 64 / 85



An example
rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from edge list
typ<- rep(0:1,length=10)
edg<- c(1,2,1,4,1,6,3,2,3,10,5,8,5,10,7,2,9,4)
#edg<- c(1,6,1,7,1,8,2,6,2,10,3,7,3,8,3,9,3,10,4,6,5,7,5,8)
g<- graph.bipartite(typ,edg)
lay <- layout.bipartite(g)
plot(g, layout=lay[,2:1],vertex.color=c("green","cyan")[V(g)$type+1])# plot the graph
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continue
H<-get.incidence(g,sparse=FALSE) #incidence matrix of a bipartite network
e<-rep(1,5)
degv<-1./(H %*% e)
Dv <- diag(degv[,1]) #node degree diagonal matrix
dege<-1./(t(H) %*% e)
De <- diag(dege[,1]) #edge degree diagonal matrix
P <- H %*% De %*% t(H) %*% Dv # PageRank matrix
P

## [,1] [,2] [,3] [,4] [,5]
## 1 0.6111 0.1667 0.00 0.3333 0.5
## 3 0.1111 0.4167 0.25 0.3333 0.0
## 5 0.0000 0.2500 0.75 0.0000 0.0
## 7 0.1111 0.1667 0.00 0.3333 0.0
## 9 0.1667 0.0000 0.00 0.0000 0.5

y <- eigen(P) # find the eigenvalues and eigenvectors
y$val # the eigenvalues

## [1] 1.00000 0.83010 0.50000 0.19537 0.08564

y$vec # the eigenvectors

## [,1] [,2] [,3] [,4] [,5]
## [1,] 0.6882 0.58930 -1.415e-16 -0.7740 0.23655
## [2,] 0.4588 -0.22856 -5.000e-01 0.4141 0.71770
## [3,] 0.4588 -0.71339 5.000e-01 -0.1867 -0.27007
## [4,] 0.2294 0.05512 -5.000e-01 0.1231 -0.58903
## [5,] 0.2294 0.29754 5.000e-01 0.4235 -0.09515
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Non-negative, irreducible and regular matrices
Non-negative matrices:

A ≥ 0, (element-wise)

Irreducible matrices: for any pair of i, j:

A ≥ 0

(Akij)ij > 0, for some kij ≥ 1

m

∀ permutation matrix P : PT AP 6=
[

X Y
0 Z

]
Regular matrices (a.k.a. primitive matrices):

A ≥ 0

Ak > 0, for some k ≥ 1

Obviously
Regular =⇒ Irreducible =⇒ Non-ngeative

Go Back Go Back
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Graph interpretation I

Let G = (V, E) be the induced directed graph from matrix A
such that V = {1, . . . , n} and an arc (i, j) ∈ E iff AT

ij > 0.
A is irreducible iff G is strongly connected.
A is regular iff G is strongly connected and the greatest
common divisor (gcd) of all cycle lengths in G is one (a.k.a.
aperiodic). Go Back
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Period I

Given a non-negative matrix A, for any i ∈ {1, . . . , n}, define
the period of index i to be the greatest common divisor of all
natural numbers k such that (Ak)ii > 0
When A is irreducible, the period of every index is the same and
is called the period of A.

Or equivalently, the period can be defined as the greatest
common divisor of the lengths of the closed directed paths in G.
If the period is 1, A is aperiodic =⇒ A is regular (or primitive).

Go Back
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Spectral radius for matrix A ∈ Cn×n with
spectrum λ1, . . . , λn I

The spectral radius ρ(A) of A is defined as:

ρ(A)
def
= max

i
(|λi|) =︸︷︷︸

Gelfand’s formula

lim
k→∞
‖Ak‖1/k.

for any matrix norm || · ||
The power of A satisfies that

lim
k→∞

Ak = 0 if and only if ρ(A) < 1.

Moreover, if ρ(A) > 1, ‖Ak‖ is not bounded for increasing k
values. Go Back
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Examples: regular
[

1 1
1 1

]
(positive)

[
0 1
1 1

] [
1 1
1 0

]

rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(1, 1,
1, 1), # the data elements

nrow=2, # number of rows
ncol=2, # number of columns
byrow = TRUE)# fill matrix by rows

g1 <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g1,edge.curved=TRUE) # plot the graph

adj<-matrix(
c(0, 1,

1, 1), # the data elements
nrow=2, # number of rows
ncol=2, # number of columns
byrow = TRUE)# fill matrix by rows

g2 <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g2,edge.curved=TRUE) # plot the graph

adj<-matrix(
c(1, 1,

1, 0), # the data elements
nrow=2, # number of rows
ncol=2, # number of columns
byrow = TRUE)# fill matrix by rows

g3 <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g3,edge.curved=TRUE) # plot the graph
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Examples: Irreducible, but not regular
[

0 1
1 0

]

rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(0, 1,
1, 0), # the data elements

nrow=2, # number of rows
ncol=2, # number of columns
byrow = TRUE)# fill matrix by rows

g <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g,edge.curved=TRUE) # plot the graph

1

2
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Examples: reducible
[

1 0
1 1

] [
1 1
0 1

]

rm(list=ls()) #remove ALL objects
library(igraph)
#Generate graph object from adjacency matrix: igraph has the regular meaning
adj<-matrix(

c(1, 0,
1, 1), # the data elements

nrow=2, # number of rows
ncol=2, # number of columns
byrow = TRUE)# fill matrix by rows

g1 <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g1,edge.curved=TRUE) # plot the graph

adj<-matrix(
c(1, 1,

0, 1), # the data elements
nrow=2, # number of rows
ncol=2, # number of columns
byrow = TRUE)# fill matrix by rows

g2 <- graph.adjacency(t(adj), mode="directed") # create igrpah object from adjacency matrix
plot(g2,edge.curved=TRUE) # plot the graph
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Observation

These example show that both the existence and position of
zeros matter!

Go Back
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Perron-Frobenius theorem I

A testament that beautiful maths tends to be useful and useful
maths tends to be beautiful eventually.
Both German Mathematicians:

Oskar Perron (1880-1975): published 18 of his 218 papers after
84 years old
Ferdinand Georg Frobenius (1849-1917):

Regular matrices share the same properties as positive matrices.
Irreducible matrices sahre most of the properties of positive
matrices
Non-negative matrices has the weakest results.
Refs: for more details, refer to Carl D. Meyer (http:
//www.matrixanalysis.com/DownloadChapters.html:
Chapter 8) Go Back
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Perron-Frobenius theorem: Positive and
Regular matrix A with spectral radius ρ(A) = r I

1 The number r is a positive real number such that any other
eigenvalue λ (possibly, complex) is strictly smaller than r in
absolute value, |λ| < r.

2 The eigenvalue r is simple. Both right and left eigenspaces
associated with r are one-dimensional.

3 A has a left eigenvector v with eigenvalue r whose components
are all positive.

4 A has a right eigenvector w with eigenvalue r whose
components are all positive.

5 The only eigenvectors whose components are all positive are
those associated with the eigenvalue r.

Go Back
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Perron-Frobenius theorem: irreducible matrix A
with period h and spectral radius ρ(A) = r I

6 Suppose the left and right eigenvectors for A are normalized so
that wTv = 1. Then

lim
k→∞

Ak/rk = vwT,

7 Collatz-Wielandt formula:

r = max
x
0

min
i:xi 6=0

[Ax]i
xi

= min
x
0

max
i:xi 6=0

[Ax]i
xi

8 The Perron-Frobenius eigenvalue satisfies the inequalities

min
i

∑
j

aij ≤ r ≤ max
i

∑
j

aij.

Go Back
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Perron-Frobenius theorem: irreducible matrix A
with period h and spectral radius ρ(A) = r I

1 The number r is a positive real number and it is an eigenvalue of
the matrix A.

2 The eigenvalue r is simple. Both right and left eigenspaces
associated with r are one-dimensional.

3 A has a left eigenvector v with eigenvalue r whose components
are all positive.

4 A has a right eigenvector w with eigenvalue r whose
components are all positive.

5 The only eigenvectors whose components are all positive are
those associated with the eigenvalue r.

Go Back

Donglei Du (UNB) Social Network Analysis 79 / 85



Perron-Frobenius theorem: irreducible matrix A
with period h and spectral radius ρ(A) = r I

6 Matrix A has exactly h eigenvalues with absolute value r:

{rei 2πk
h }0≤k≤h−1 = {r, rei 2π

h , . . . , re
2π(h−1)

h }

7 Let ω = 2π/h. Then the matrix A is similar to eiω A,
consequently the spectrum of A is invariant under multiplication
by eiω (corresponding to the rotation of the complex plane by
the angle ω). Go Back
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Perron-Frobenius theorem: irreducible matrix A
with period h and spectral radius ρ(A) = r

8 If h > 1 then there exists a permutation matrix P such that

PAP−1 =


0 A1 0 0 . . . 0
0 0 A2 0 . . . 0
... ... ... ... ...
0 0 0 0 . . . Ah−1

Ah 0 0 0 . . . 0

 ,

where the blocks along the main diagonal are zero square
matrices.
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Further properties: irreducible matrix A with
period h and spectral radius ρ(A) = r

1 (I + A)n−1 > 0.
2 Wielandt’s theorem. If |B| < A, then ρ(B) ≤ ρ(A).
3 If some power Ak is reducible, then it is completely reducible, i.e. for some

permutation matrix P, it is true that:

PAP−1 =


A1 0 0 . . . 0
0 A2 0 . . . 0
... ... ... ...
0 0 0 . . . Ad


where Ai are irreducible matrices having the same maximal eigenvalue. The
number of these matrices d is the greatest common divisor of k and h.

4 If c(x) = xn + ck1 xn−k1 + ck2 xn−k2 + . . . + cks x
n−ks is the characteristic

polynomial of A in which the only nonzero coefficients are listed, then
h = gcd(k1, . . . , ks)

Go Back
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Further properties: irreducible matrix A with
period h and spectral radius ρ(A) = r

5 Cesáro averages:

lim
k→∞

k
∑

i=0

(
A
r

)k

k
=

vwT

wTv
> 0.

6 For h = 1:

lim
k→∞

(
A
r

)k
=

vwT

wTv
> 0.

7 The adjoint matrix for (r− A) is positive.
8 If A has at least one non-zero diagonal element, then A is regular.
9 If 0 ≤ A < B, then rA ≤ rB. Moreover, if A is irreducible, then the

inequality is strict: rA < rB.
Go Back
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Perron-Frobenius theorem: non-negative matrix
A with spectrum |λ1| ≤ . . . ≤ |λn|

1 λn ≥ max{|λ1|, . . . , |λn−1|}
2 There exists left and right eigenvectors u, wT ∈ R of λn that

are nonnegative (not necessarily unique, or strictly positive):

Au = λnu,
wT A = λnwT

3 Collatz-Wielandt min-max formula

λn = max
x
0

min
i:xi 6=0

[Ax]i
xi

Go Back
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