Lecture 8: Sampling Methods

Donglei Du (ddu@unb.edu)

Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2

Donglei Du (UNB)

ADM 2623: Business Statistics

1 / 30

- 4 目 ト - 4 日 ト - 4 日 ト

Table of contents

- Sampling Methods
 - Why Sampling
 - Probability vs non-probability sampling methods
 - Sampling with replacement vs without replacement
 - Random Sampling Methods
- 2 Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement
- 3 Sampling error vs non-sampling error
- Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR
- 5 Distribution of the sample mean under SRR: The central limit theorem

- 4 回 ト - 4 回 ト

Layout

Sampling Methods

- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods
- 2 Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement
- 3 Sampling error vs non-sampling error
- 4 Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR
- 5 Distribution of the sample mean under SRR: The central limit theorem

(人間) トイヨト イヨト

- The physical impossibility of checking all items in the population, and, also, it would be too time-consuming
- The studying of all the items in a population would not be cost effective
- The sample results are usually adequate
- The destructive nature of certain tests

- Probability Sampling: Each data unit in the population has a known likelihood of being included in the sample.
- Non-probability Sampling: Does not involve random selection; inclusion of an item is based on convenience

- 4 同 6 4 日 6 4 日 6

- Sampling with replacement: Each data unit in the population is allowed to appear in the sample more than once.
- Sampling without replacement: Each data unit in the population is allowed to appear in the sample no more than once.

イロト 不得下 イヨト イヨト

- Most commonly used probability/random sampling techniques are
 - Simple random sampling
 - Stratified random sampling
 - Cluster random sampling

・ 同 ト ・ ヨ ト ・ ヨ ト

Simple random sampling

• Each item(person) in the population has an equal chance of being included.

Figure: Credit: Open source textbook: OpenIntro Statistics, 2nd Edition, D. M. Diez, C. D. Barr, and M. Cetinkaya-Rundel (http://www.openintro.org/stat/textbook.php)

Stratified random sampling

• A population is first divided into strata which are made up of similar observations. Take a simple random sample from each stratum.

Figure: Credit: Open source textbook: OpenIntro Statistics, 2nd Edition, D. M. Diez, C. D. Barr, and M. Cetinkaya-Rundel (http://www.openintro.org/stat/textbook.php)

Cluster random sampling

• A population is first divided into clusters which are usually not made up of homogeneous observations, and take a simple random sample from a random sample of clusters.

Figure: Credit: Open source textbook: OpenIntro Statistics, 2nd Edition, D. M. Diez, C. D. Barr, and M. Cetinkaya-Rundel (http://www.openintro.org/stat/textbook.php)

< 回 ト < 三 ト < 三 ト

Layout

1 Sampling Methods

- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods

Simple random sampling with and without replacement

- Simple random sampling without replacement
- Simple random sampling with replacement
- 3 Sampling error vs non-sampling error
- 4 Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR
- 5 Distribution of the sample mean under SRR: The central limit theorem

- 4 同 6 4 日 6 4 日 6

Simple random sampling without replacement (SRN)

- Repeat the following process until the requested sample is obtained:
 - Randomly (with equal probability) select an item, record it, and discard it
 - Example: draw cards one by one from a deck without replacement.
- This technique is the simplest and most often used sampling technique in practice.

- $\bullet\,$ Given a population of size N, choose a sample of size n using SRN
 - > N<-5
 - > n<-2
 - > sample(1:N, n, replace=FALSE)

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simple random sampling with replacement (SRR)

- Repeat the following process until the requested sample is obtained:
 - Randomly (with equal probability) select an item, record it, and replace it
 - Example: draw cards one by one from a deck with replacement.
- This is rarely used in practice, since there is no meaning to include the same item more than once.
- However, it is preferred from a theoretical point of view, since
 - It is easy to analyze mathematically.
 - Moreover, SRR is a very good approximation for SRN when N is large.

- \bullet Given a population $\{1,\ldots,N\}$ of size N, choose a sample of size n using SRR
 - > N<-5
 - > n<-2
 - > sample(1:N, n, replace=TRUE)

3

イロト 不得下 イヨト イヨト

Layout

1 Sampling Methods

- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods
- 2 Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement

Sampling error vs non-sampling error

- Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR
- 5 Distribution of the sample mean under SRR: The central limit theorem

(人間) トイヨト イヨト

Sampling error vs non-sampling error

- **Sampling error**: the difference between a sample statistic and its corresponding population parameter. This error is inherent in
 - The sampling process (since sample is only part of the population)
 - The choice of statistics (since a statistics is computed based on the sample).
- Non-sample Error: This error has no relationship to the sampling technique or the estimator. The main reasons are human-related
 - data recording
 - non-response
 - sample selection

- 4 目 ト - 4 日 ト - 4 日 ト

Layout

1 Sampling Methods

- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods
- 2 Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement
- Sampling error vs non-sampling error
- Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR

5 Distribution of the sample mean under SRR: The central limit theorem

- 4 同 6 4 日 6 4 日 6

Sampling distribution of sample statistic

- Sampling distribution of sample statistic: The probability distribution consisting of all possible sample statistics of a given sample size selected from a population using one probability sampling.
- Example: we can consider the sampling distribution of the sample mean, sample variance etc.

- 4 目 ト - 4 日 ト - 4 日 ト

An example of the sampling distribution of sample mean under SRR

- Consider a small population $\{1, 2, 3, 4, 5\}$ with size N = 5. Let us randomly choose a sample of size n = 2 via SRR.
- It is understood that sample is ordered. Then there are $N^n = 5^2 = 25$ possible samples; namely

sample	\bar{x}								
(1,1)	1	(2,1)	1.5	(3,1)	2	(4,1)	2.5	(5,1)	3
(1,2)	1.5	(2,2)	2	(3,2)	2.5	(4,2)	3	(5,2)	3.5
(1,3)	2	(2,3)	2.5	(3,3)	3	(4,3)	3.5	(5,1)	4
(1,4)	2.5	(2,4)	3	(3,4)	3.5	(4,4)	4	(5,1)	4.5
(1,5)	3	(2,5)	3.5	(3,5)	4	(4,5)	4.5	(5,1)	5

An example of the sampling distribution of sample mean under SRR

• Let us find the sampling distribution of the sample mean:

\bar{X}	Probability		
1	1/25		
1.5	2/25		
2	3/25		
2.5	4/25		
3	5/25		
3.5	4/25		
4	3/25		
4.5	2/25		
5	1/25		

A D A D A D A

The mean and variance of the sample mean under SRR

• Let us find the mean and variance of the sampling distribution of the sample mean:

\bar{X}	$P(\bar{X})$	$\bar{X}P(\bar{X})$	$\bar{X}^2 P(\bar{X})$
1	1/25	1/25	1/25
1.5	2/25	3/25	4.5/25
2	3/25	6/25	12/25
2.5	4/25	10/25	25/25
3	5/25	15/25	45/25
3.5	4/25	14/25	49/25
4	3/25	12/25	48/25
4.5	2/25	9/25	40.5/25
5	1/25	5/25	25/25
		75/25=3	250/25=10

The mean and variance of the sample mean under SRR

• So the mean and variance of the sample mean are given as

$$\bar{x} = 3$$

 $s^2 = 10 - 3^2 = 1$

• On the other hand, the population mean and variance are given as

$$\mu = \frac{1+2\dots+5}{5} = 3$$

$$\sigma^2 = \frac{55 - \frac{15^2}{5}}{5} = 2$$

Relationship between sample and population mean and variance under SRR

So from this example

$$\bar{x} = \mu = 3$$

 $s^2 = \frac{\sigma^2}{2} = \frac{2}{2} = 1$

• The above relationship is true for any population of size N and sample of size \boldsymbol{n}

$$\bar{x} = \mu s^2 = \frac{\sigma^2}{n}$$

Distribution of the sample mean under SRR

• Let us look the histogram of the sample mean in the above example.

Donglei Du (UNB)

ADM 2623: Business Statistics

25 / 30

Distribution of the sample mean under SRR for various population

• Let us look the histogram of the sample mean for various population.

Layout

1 Sampling Methods

- Why Sampling
- Probability vs non-probability sampling methods
- Sampling with replacement vs without replacement
- Random Sampling Methods
- 2 Simple random sampling with and without replacement
 - Simple random sampling without replacement
 - Simple random sampling with replacement
- 3 Sampling error vs non-sampling error
- 4 Sampling distribution of sample statistic
 - Histogram of the sample mean under SRR

Distribution of the sample mean under SRR: The central limit theorem

- 4 同 6 4 日 6 4 日 6

Distribution of the sample mean under SRR: The central limit theorem

• The central limit theorem: The sampling distribution of the means of all possible samples of size *n* generated from the population using SRR will be approximately normally distributed when *n* goes to infinity.

$$\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$$

- How large should *n* be for the sampling mean distribution to be approximately normal?
 - In practice, $n\geq 30$
 - If n large, and we do not know σ , then we can use sample standard deviation instead. Then Central Limit Theorem is still true!

イロト 不得下 イヨト イヨト

Distribution of the sample mean under SRR for small sample

• If n small, and we do not know σ , but we know the population is normally distributed, then replacing the standard deviation with sample standard deviation results in the Student's t distribution with degrees of freedom df = n - 1:

$$T = \frac{\bar{X} - \mu}{s/\sqrt{n}} \sim t(n-1)$$

- Like Z, the t-distribution is continuous
- $\bullet\,$ Takes values between $-\infty$ and ∞
- It is bell-shaped and symmetric about zero
- It is more spread out and flatter at the center than the z-distribution
- For larger and larger values of degrees of freedom, the *t*-distribution becomes closer and closer to the standard normal distribution

Donglei Du (UNB)

くほと くほと くほと

Comparison of t Distributions with Normal distribution

Comparison of t Distributions

Donglei Du (UNB)

ADM 2623: Business Statistics

30 / 30